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Abstract

Sequential decision making with feature-linear models, by David Janz

This thesis is concerned with the problem of sequential decision making, where an agent
interacts sequentially with an unknown environment and aims to maximise the sum
of the rewards it receives. Our focus is on methods that model the reward as linear
in some feature space. We consider a bandit problem, where the rewards are linear
in a reproducing kernel Hilbert space, and a reinforcement learning setting with features
given by a neural network. The thesis is split into two parts accordingly.

In part I, we introduce a new algorithm for the optimisation of continuous functions with
a known number of derivatives under noisy bandit feedback. The algorithm, Partitioned
GP-UCB, combines ideas from classic kernel-based bandit algorithms and hierarchical
optimisation methods to provide near-tight confidence intervals and strong guarantees
on computational complexity. As part of our analysis, we develop a novel bound on
the effective dimension of kernel ridge regression with the Matérn kernel with respect to
the volume of the domain. Part I is mainly concerned with the derivation of this bound.

In part II we tackle practical exploration in deep reinforcement learning, with a focus on
methods that combine linear uncertainty estimates with feature embeddings given by
deep Q-function networks. We observe a flaw within previous such work: while these
methods enforce a temporal difference relationship on the mean state-action values given
by the linear model, they do not constrain its inputs—the neural network embeddings—
and these determine the uncertainty estimates of linear models. We show that such
embeddings need to follow a certain successor feature structure and develop a model
based on this insight: Successor Uncertainties. We demonstrate that our model is capable
of solving hard tabular exploration challenges and that it scales to the Atari Learning
Environment, where it attains strong scores relative to competing methods.
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Introduction

In this thesis we develop and analyse algorithms for sequential decision making. We focus
on two settings: global optimisation, where we optimise an unknown function with
stochastic feedback, and reinforcement learning, where an agent interacts with a stateful
environment (effectively a single-player game) and aims to maximise some cumulative
reward signal. In both contexts, our interest is fuelled by recent developments in the
application of machine learning, but we will approach these topics from a more theoretical
perspective, one based on the framework of bandit algorithms.

The bandit framework, introduced formally by T. L. Lai et al. (1985) but considered as
early as Thompson (1933), considers an agent (learner) interacting with an environment
(bandit) sequentially over a number of time-steps. Each interaction consists of the agent
selecting an action (arm) from a given set, and the environment returning a stochastic
reward sampled from an unknown action-conditioned reward distribution. The agent’s
goal is to select actions that maximise the sum of the rewards it receives over some time
horizon. At the core of the bandit framework is the exploration-exploitation problem:
the agent can either exploit actions it believes yield high rewards, or sample rewards
from arms it is less certain about in hope of finding arms with higher mean rewards.

Bandit algorithms and the exploration-exploitation trade-off are perhaps easiest to
understand through the lens of their potential real-life applications. These include:

• Medicine, where one of a number of possible treatments is sequentially assigned to
each patients in the treatment group based on the outcomes of previous patients
(Thompson, 1933; Durand et al., 2018) or where the dose of a drug is adjusted on
a per-patient basis depending on their earlier response (Bastani et al., 2020).

• Online advertisement and recommender systems, where adverts or recommendations
are displayed in a manner that balances a) future clicks that may result from a
well-developed (explored) profile of the user with b) clicks that may be attained
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now by exploiting current estimates of the user’s interests (Bouneffouf et al., 2013;
Bouneffouf, 2014; Q. Zhou et al., 2017).

• Packet routing, where an algorithm sequentially decides on the route that each
packet will take from point A to point B, with the aim of minimising the overall
transfer time (Talebi et al., 2017). Here, exploration may lead to finding a faster
route, but an algorithm that explores too much may be slower than one that
exploits a known good route.

While our applications of the framework will depart from the classic bandit problems
listed here, they are nonetheless problems underpinned by a need to balance exploration
with exploitation. We now look at these in turn.

The first problem we study, that of global optimisation, is motivated by the practice of
Bayesian optimisation. Here, an unknown function is optimised under first order noisy
feedback, by first placing a non-parametric prior over that function, then sequentially
updating it under a suitable likelihood and using the resulting posterior for decision
making. Bayesian optimisation is known to be very sample-efficient in practice, and has
been used for:

• Optimising hyperparameters for other machine learning algorithms (Hutter et al.,
2011; Turner et al., 2021), including deep neural networks (Snoek et al., 2012).

• De novo drug and material design (Gómez-Bombarelli et al., 2018), where an
algorithm selects new molecules to synthesise and test for a specific purpose.

• Design of large scale scientific experiments (Kirschner et al., 2019).

In contrast with the previous examples, these are problems of pure exploration where
no cost is assigned to exploration, and the agent’s goal is to identify a good arm within
some limited budget of evaluations. However, under very mild conditions, algorithms
that solve the bandit problem (max cumulative reward) also solve the global optimisation
(max reward) problem (Bubeck et al., 2011).

While Bayesian optimisation with various point-acquisition (action-selection) rules has
been previously studied under the bandit framework (Srinivas, Krause, S. Kakade et al.,
2010), existing strong guarantees tend to hold only for average performance—under the
assumption that the function being optimised is a sample from some assumed prior, and
that we wish to do well on average across such samples. Under the criterion of worst-case
performance, most existing algorithms are only provably near-optimal when optimising
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smooth (infinitely differentiable) functions. Our focus is on developing a method with
worst-case guarantees for functions with very weak differentiability properties. Our
contribution, the Partitioned GP-UCB algorithm, is effective in practice and has strong
theoretical guarantees for both performance and runtime; it is the first method to satisfy
these three criteria. The method is based on a combination of insights from a feature-
linear modelling perspective (with features based on kernel functions) with ideas from
methods for the optimisation of Lipschitz continuous functions (Jones et al., 1993; Bubeck
et al., 2011), and certain equivalences between these two approaches.

Reinforcement learning, the second area of our study, is a sequential decision making
problem where the chosen actions affect not only the immediate rewards but also those
attained in the future. Reinforcement learning has received much attention in applied
literature since neural networks, and in particular convolutional networks, have allowed
classic reinforcement learning agents to tackle increasingly complex problems. Recent
successful applications of reinforcement learning include:

• Games, famously the Atari 2600 games Mnih et al. (2015) and M. G. Bellemare
et al. (2013), but since then also modern games such as StarCraft II (Vinyals et al.,
2019) as well as classic board games including Go, Chess and Shogi (Silver, Huang
et al., 2016; Silver, Hubert et al., 2017; Schrittwieser et al., 2020).

• The protein folding problem, tackled by Jumper et al. (2021), as well as de novo
drug and material design (Olivecrona et al., 2017; Guimaraes et al., 2017; Z. Zhou
et al., 2019; Simm et al., 2020).

• Industrial control problems, like optimising data centre cooling systems (Evans
et al., 2016) and reducing the power usage of water treatment plants (Lilwall, 2021).

• Improving human-computer interaction, including brain-computer interfaces con-
trolling, for example, bionic limbs (Pohlmeyer et al., 2014; Ubelacker, 2019).

While the use of deep neural networks greatly extended the applicability of reinforcement
learning algorithms, the advances in function approximation and model flexibility came at
the expense of the methods used to explore the environment: the successes of reinforcement
learning have mainly come in areas with access to large amount of cheap data, and
use simple, naïve exploration methods. Our approach will be to use a bandit-based
perspective to improve exploration within such deep reinforcement learning algorithms.

We can use the bandit framework to analyse reinforcement learning algorithms by
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augmenting the environment to return a state alongside the reward, with that state
affecting future states and rewards. Within our work, we use this perspective together
with a linear model of the rewards based on neural network embeddings on state-
action pairs—this combination allows us to leverage techniques from the well-developed
literature on sequential decision making under linear function approximation, while
retaining applicability to modern, deep reinforcement learning. Our main contribution is
the Successor Uncertainties family of methods. These provide strong performance on
hard exploration problems that scales to complex, high dimensional problems. Alongside
out algorithmic contribution, we also provide an in-depth analysis and critique of similar
methods.

Moving forward, after we briefly outline some notation, the thesis splits into two parts:
first covering global/Bayesian optimisation, second reinforcement learning. Each part
begins with an overview of the technical contributions therein and their structure. Part
I, being more theoretical in nature, sets out many basic results around linear models and
sequential decision making. Readers interested in part II, reinforcement learning but
unfamiliar with the underlying theory ought to consult chapters 1, 2 and 3 of part I and
the references therein.

16



Overview of notation

General We use .= to emphasise an equality that follows directly from definition. {aj}
is used as shorthand for {aj : j ∈ J} when the index set J is unambiguous. For n ∈ N,
[n] denotes the set {0, . . . , n− 1}.

Vectors, matrices and functions For a finite set A, we identify each map f : A 7→ R
with a vector f ∈ R|A| and write either f(a) or [f ]a for the value f takes on a ∈ A.
ea denotes the unit vector in R|A| with [ea]a = 1. ∥ · ∥ and ⟨·, ·⟩ denote the ℓ2/L2 norms
and inner products. ⟨·, ·⟩F denotes Frobenius inner product for matrices.

Probability and integration For random variables X, Y , E[X|Y = y] and P(X|Y =
y) are numbers while E[X|Y ] and P(X|Y ) random variables. 1{E} denotes the indicator
of an event E . For a finite set A, π a measure on A and each a ∈ A, we use π(a) to denote
π({a}). For f ∈ L1(Rd),

∫
f(x)dx denotes its integral with respect to the Lebesgue

measure on Rd. We do not discuss measurability and σ-algebras; the latter can be taken
to be finite/Borel as appropriate. Equality of random variables is to be understood as
almost sure if not otherwise specified.

Asymptotic notation We adopt Hardy’s notation. We will use RT ≤ Cf(T ) to
denote that there exists a constant C > 0 independent of T such that RT ≤ Cf(T ) for
all T . We will write Cd to emphasise that this constant depends on some quantity d

and C ′
d, C

′′
d when we need more constants. Whenever such otherwise undefined constants

appear multiple times, they are not to be interpreted as being related. We will use ι
to denote any terms that have an at most polylogarithmic dependence on the relevant
asymptotic quantities. We will use ε > 0 to represent an arbitrary small number and
take ε+ ε = ε.
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Part I

Kernel-based bandit optimisation





Overview of part I

Within part I of this thesis, we consider the problem of optimising a continuous function
f : [0, 1]d 7→ R under bandit feedback. Specifically, for T ∈ N, at each step t = 1, . . . , T
we select an Xt ∈ [0, 1]d and observe

Yt = f(Xt) + εt,

where εt is a B-subGaussian independent random variable for B > 0 and f belongs to a
ball of a known radius within a Sobolev Hilbert space of order ν + d/2, for a smoothness
parameter ν > 0. The latter assumption implies that f has ⌊ν⌋th order mixed partial
derivatives.

This optimisation problem emerges from a frequentist analysis of a classic Bayesian
bandit optimisation method, the Gaussian Process upper confidence bound algorithm
(GP-UCB, Srinivas, Krause, S. M. Kakade et al., 2009), when the Matérn kernel is used
to define the covariance function (M. L. Stein, 1999; Matérn, 1960). Most previous
results for this and similar Gaussian process optimisation algorithms are restricted to
kernels with an exponential or fast polynomial decay spectral density, like the Squared
Exponential kernel, and are thus only applicable to the optimisation of smooth or near-
smooth functions. While we examine the problem from a bandit perspective, our results
translate immediately to the corresponding global optimisation problem that motivated
our work (Bubeck et al., 2011).

The problem is of high practical relevance. Gaussian process optimisation is applied
in a number of areas including A/B testing, recommender systems, robotics, sensor
networks and preference learning (Shahriari et al., 2015). The Matérn family of kernels in
particular is the default choice for the purpose of the black-box optimisation of machine
learning algorithms (Snoek et al., 2012). New theoretical insights may lead to faster,
more robust algorithms in this area that perform well across larger sets of problems.
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Contributions

We develop the Partitioned GP-UCB algorithm, an extension and generalisation of the
GP-UCB algorithm (Srinivas, Krause, S. M. Kakade et al., 2009; Srinivas, Krause, S.
Kakade et al., 2010) that attains low regret for a large set of smoothness parameters ν
within the outlined setting. In particular, we prove that for all ν > 1 and all d ≥ 1, the
regret RT incurred by Partitioned GP-UCB over T interactions is bounded as

RT ≤ CεT
d(2d+3)+2ν
d(2d+4)+4ν

+ε (∀ε > 0).

For values of ν and d for which the eigenfunctions of a certain associated integral equation
are uniformly bounded, we also have the stronger result

RT ≤ CεT
d+ν

d+2ν
+ε (∀ε > 0).

This matches the corresponding algorithm agnostic lower bound up to the ε in the
exponent (Scarlett, Bogunovic et al., 2017a). We show that the uniform boundedness
condition holds for the case d = 1, ν = 1/2. Verifying whether it holds for general d, ν
remains an open problem.

The results we present improve significantly on those available for the original GP-UCB
algorithm, which are of the form

RT ≤ ZT,d,v with ZT,d,v ≥ CT
3d+2ν
2d+4ν .

Notably, the results for GP-UCB do not guarantee sublinear regret in the regime
d ≥ 2ν; those for Partitioned GP-UCB do. When the additional uniform boundedness
condition holds, Partitioned GP-UCB is also near-optimal as a global optimisation
algorithm. Moreover, where the set of arms is constrained to a finite subset of [0, 1]d, the
computational complexity of Partitioned GP-UCB is bounded as CεT

1+ε for all ε > 0.
This result is near-optimal, and again improves significantly on the corresponding results
for GP-UCB and for its sketching-based variants (Calandriello, Carratino et al., 2019;
Calandriello, Carratino et al., 2020).

Partitioned GP-UCB works by partitioning the domain into a cover consisting of axis-
aligned hypercubes and constructing GP-UCB–style upper confidence bounds independ-
ently on each cover element. Importantly, each upper bound is based only on the
observations contained within the corresponding hypercube. The resulting piecewise
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upper confidence on the domain is tighter than that given by GP-UCB. At the core
of the method is a novel result that gives a quantitative version of the intuition that
there is less to learn on a smaller domain. Specifically, we bound how information gain
for Gaussian process regression with a Matérn kernel scales with the support of that
regression problem. This result may find applications outside of our algorithm. The
cover construction we use is similar to that of the Hierarchical Optimistic Optimisation
algorithm (HOO, Bubeck et al., 2011), but our algorithm applies to a larger range of
smoothness parameters ν than HOO. The subsetting of data we use resembles the trick
within the related SupKernelUCB algorithm (Valko, Carpentier et al., 2013). Unlike
SupKernelUCB, however, our algorithm performs well in practice.

Structure and attribution

Part I is structured as follows:

1. Chapter 1 introduces the bandit formalism and standard upper-confidence-bound-
based algorithms and outlines the OFUL algorithm (Abbasi-Yadkori et al., 2011)
and its kernel-based extension, equivalent to the GP-UCB algorithm.

2. Chapter 2 defines Sobolev spaces, kernels and Gaussian process regression, and
outlines related results. The key insights in this chapter are the development
of the relation between the Matérn kernel and particular Sobolev spaces, of the
equivalence between kernel-based linear regression and Gaussian process regression
and of the relation between effective dimension and information gain.

3. Chapter 3 introduces in detail the prior works most relevant to our algorithm:
the GP-UCB, SupKernelUCB and HOO algorithms. We discuss the associated
theoretical results and compare these with the relevant algorithm agnostic lower
bounds.

4. Chapter 4 derives and discusses new results on the information gain associated
with conjugate Gaussian process regression using a Matérn family kernel. We use
these to provide an improvement on the regret bound for the GP-UCB algorithm
under a specific choice of hyperparameters.

5. Chapter 5 describes the Partitioned GP-UCB algorithm. provides an analysis of
its regret and computational complexity and presents an experimental validation
of the method.
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Chapter 1

An introduction to bandits

In this chapter, we develop the basic notions and formalisms around bandits and build
up to an intuitive understanding of kernelised linear bandit algorithms.

1.1 Stochastic bandit formalism

Bandit problems correspond to the repeated interaction between an agent and a envir-
onment, taking place over time-steps t = 1, . . . , T with T ∈ N known as the horizon.
We define a bandit instance ξ by the set of available arms X and a set of distribu-
tions {Px : x ∈ X}. On selecting action Xt ∈ X , the agent receives a random reward
Yt|Xt ∼ PXt with mean f(Xt) = E[Yt|Xt], which we call the payoff (for Xt). The agent
is defined by a sequence π = {πt} with each πt mapping from a history of outcomes
Ht = (X1, Y1, . . . , Xt, Yt) to a measure on Xt+1. We call an algorithmic construction for
π a bandit algorithm.

The interaction between an agent π and a bandit problem instance ξ induces a probability
measure over the history HT . The aim of the agent is then to maximise a statistic,
typically the expectation, of the sum of the rewards Y1, . . . , YT . For given bandit instance
ξ, we write this equivalently as minimising a statistic of the regret, given by

R(T, ξ, π) =
T∑

t=1
f ⋆ − f(Xt),

where f ⋆ .= supx∈X E[Zx] for Zx ∼ Px is the optimal payoff. We call any x⋆ ∈ X with
f(x⋆) = f ⋆ an optimal arm.
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The challenge facing the agent is that it does not know a priori the instance ξ it faces,
only that it belongs to some set Ξ, and may also not know T . We look for agents that
perform well across all instances in Ξ and all horizons T . A standard way of formalising
this is upper bounding the worst-case expected regret,

R̂(T, π) = sup
ξ∈Ξ

ER(T, π, ξ).

An algorithm π that satisfies R̂(T, π) = infπ′ R̂(T, π′) for all T ∈ N is said to be minimax-
optimal on Ξ. This is a very strong requirement. More pragmatically, we look to find
functions g and f such that

g(T ) ≤ inf
π′
R̂(T, π′) ≤ R̂(T, π) ≤ f(T ).

We refer to g(T ) as an algorithm-agnostic lower bound on the worst case expected regret
and f(T ) an upper bound. If for a given Ξ and algorithm π, g and f differ by less than
CεT

ε for all ε > 0, we say that π is near-minimax-optimal (on Ξ). If R̂(T, π)/T → 0 as
T →∞, we will say the algorithm has sublinear regret.

1.1.1 Constant probability results, adaptivity

The results within part I of this thesis will be stated in terms of R(T, π, ξ), which we
will denote by RT , and will be of the form:

For any δ ∈ (0, 1), with probability 1− δ, RT ≤ f(T, δ).

This is standard phrasing within the kernel-based optimisation literature most relevant
to our work, but it is a shorthand. A formal version of the statement reads:

For all δ ∈ (0, 1), there exists an event E such that the probability of E is
no less than 1 − δ and that on the event E, for all T ∈ N and all ξ ∈ Ξ,
R(T, π, ξ) ≤ f(T, δ).

The egregious imprecision of the original statement becomes more excusable once we
note that the formal statement is itself the strictest that could be reasonably inferred.

For settings where the maximum expected per-step regret can be bounded uniformly
across Ξ by some constant (such as analysed in this thesis) constant-probability results
translate trivially to results in expectation. Say the bounding constant is A, then we
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bound the regret on the complement of E by AT , giving an overall bound of the form

ERT ≤ min
δ∈(0,1)

((1− δ)f(T, δ) + δAT ) ,

where we may allow δ to depend on T . The other direction, from bounds in expectation
to those in probability, can be obtained in a generic manner using Markov’s inequality.

Additionally, results may show a dependence of f on the instance ξ. Such results are
preferable, as they show not only how the algorithm performs on the worst-case problems
but also how it adapts when presented with less challenging instances. We say algorithms
and analysis that depend explicitly on the instance ξ, and not just on Ξ, are adaptive.
Adaptivity will be an important point within our work.

1.1.2 Simple and Bayesian regret, Bayesian optimisation

Simple and Bayesian regret are two measures of performance related to regret that come
up in settings that are variations of that considered in this work.

First, we might assume that along with Ξ we are given a measure Pξ over Ξ and that ξ
is sampled from Pξ at the start of all interaction. Then we might consider the problem
of minimising instance regret on average across Ξ. We call this quantity the Bayesian
regret and denote it

BRT
.= EEξR(T, π, ξ).

This Bayesian formulation of the bandit problem is in a sense easier than the classical
formulation, in that worst-case expected regret immediately bounds average regret.
The challenge in minimising Bayesian regret is then in optimally using the additional
information contained in the prior Pξ.

Second, we may look at global optimisation/pure exploration, where we do not care about
intermediate rewards {Yt} but instead wish to quickly identify an optimal arm. This is
formalised as looking for an estimate X̂⋆

T such that SRT = f ⋆− f(X̂⋆
T ), called the simple

regret, is low. Bandit algorithms can be used to tackle the pure exploration problem. In
particular, if we let X̂⋆

T be chosen uniformly at random from arms X1, . . . , XT selected
by a bandit algorithm with sublinear regret, then

ERT/T = f ⋆ − E
1
T

T∑
t=1

f(Xt) = f ⋆ − Ef(X̂⋆
T ) = SRT → 0 as T →∞.
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The converse does not hold in general.

Combining a prior over the bandit class with a simple regret objective gives Bayesian
optimisation, a problem highly related to the ideas discussed in this thesis and one where
algorithms such as GP-UCB see most of their practical use (Snoek et al., 2012).

1.2 Algorithm design

With the formalities behind us, we now look at the two main algorithm design strategies
that underpin our contributions:

• Optimism in the Face of Uncertainty (OFU). Optimism is a key tool for bandit
optimisation that reduces a bandit problem to that of constructing high probability
estimates for the corresponding payoff function.

• Linear approximation. We will use linear combinations of elements of appropriately
chosen feature spaces to approximate the continuous payoff functions we optimise.

We explain these through a series of examples. First, we show how optimism works by
applying it to a two-armed bandit. Then, we present OFUL, the now-standard optimistic
algorithm for linear bandits, and sketch its extension to feature-linear models. We end
by showing how this feature-linear model may be evaluated using kernel functions.

1.2.1 Upper confidence bound algorithms

We present upper confidence bound (UCB) algorithms through the lens of the methodology
developed in the seminal work by Auer (2002) and Auer, Cesa-Bianchi et al. (2002). The
core of these algorithms is the construction of an upper confidence bound for the payoff
function based on the data observed thus far. The algorithm then selects an arm that
maximises this bound, and the resulting reward acts to bring this bound closer to the
empirical average for that arm. In turn, the empirical average converges suitably to the
true payoff of that arm, and for suboptimal arms, eventually drops below that associated
with an optimal arm. This leads to an optimal arm being selected increasingly often.
How quickly such an algorithm converges onto optimal arms depends on the tightness of
the upper confidence bounds it uses. Much of research on bandit algorithms, and indeed
our development in part I, is focused on developing tighter upper bounds for specific
problem classes.
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1.2.2 A simple UCB algorithm

We illustrate the UCB method on a two-armed bandit with independent Gaussian rewards,
based on Auer, Cesa-Bianchi et al. (2002). We focus on breaking the analysis down into
modular parts, which we will encounter repeatedly throughout the thesis.

The bandit problem considered consists of two arms, X = {x1, x2}, with corresponding
payoffs f1, f2. Without loss of generality take x1 to be optimal with f1 = f2 + ∆ for some
∆ > 0 referred to as the suboptimality gap. For a given horizon T ∈ N and each time
step t = 1, . . . , T , the agent selects an arm Xt = xi and observes Yt = fi + εt for εt an
independent standard normal random variable.

We begin the design of the algorithm by deriving an upper confidence bound for the
payoff of each arm for a single time step t. Let δ > 0 be a confidence parameter. Then
for arm xi and step t, we look for a UCB of the form

ui,t = µi,t + βi,t(δ),

where µi,t is the empirical mean of rewards sampled from arm xi by step t (an unbiased
estimator of fi) and βi,t(δ) is the corresponding confidence width, which we will choose
such that P{fi − µi,t < βi,t(δ)} ≥ 1− δ. The Cramér-Chernoff method gives us that the
average of n standard normal random variables satisfies

P
(

1
n

n∑
i=1

εi ≥ z

)
≤ e−nz2/2 (∀z > 0),

which leads to the choice βi,t(δ) =
√

2 log(1/δ)/ni,t, where ni,t is the number of times xi

was selected prior to the start of round t. Next, we use a union bound to extend this
inequality to hold for all time-steps and arms simultaneously. For any sequence {bt > 0},

P
(

T⋃
t=1
{fi < µi,t + βi,t(bt)}

)
≥ 1−

T∑
t=1

bi,t.

Taking bt = δ/(4T ) for all t, we have that ∑i∈{0,1}
∑T

t=0 bi,t = δ/2. The final 1/2 factor
allows us to ask for a symmetric lower bound of the form µi,t − βi,t(δ) to hold.

One important direction of research in bandit literature is the development and application
of alternative constructions for time-uniform bounds. See Boucheron et al. (2013), chapter
1, for an overview of recent developments in this area.
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Algorithm: UCB
Parameters: T ∈ N, δ ∈ (0, 1)
Initialisation: µi,t =∞, ni,t = 0 for i = 1, 2

For each t = 1, . . . , T :
1. Compute

ni,t =
∑
τ<t

1{Xτ = i} and µi,t = 1
ni,t

∑
τ<t

Yτ1{Xτ = i}

for i = 1, 2.
2. Select Xt = xi for

i ∈ arg max
b∈{1,2}

µb,t +
√

2 log(1/δ)/nb,t,

breaking ties randomly.

Figure 1.1: UCB Algorithm, two-armed bandit.

With the upper confidence in place, the algorithm is ready (fig. 1.1). It remains to
analyse its performance. Recall that f1 − f2 = ∆. We can write the regret as

RT = ∆n2,T .

To bound the incurred regret, we bound n2,T .

Suppose that we are on the good event where with probability 1−δ the derived confidence
intervals hold; that is

f1 < µ1,t + β1,t(δ) and − f2 < −µ2,t + β2,t(δ).

If x2 was selected at a time step t, we know that

µ2,t + β2,t(δ) = u2,t ≥ u1,t = µ1,t + β1,t(δ)

and that the per-step regret incurred was ∆. Combining the two inequalities,

∆ = f1 − f2 < µ1,t + β1,t(δ)− µ2,t + β2,t(δ) ≤ 2β2,t(δ).

This bound of per-step regret by twice the confidence widths will feature repeatedly in
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the analysis of the algorithms we consider.

The final step is specific to finite-armed bandits. If ∆ > 2β2,τ (δ) for some τ ∈ N then
Xτ ̸= x2, and if this holds for some τ then, by the monotonicity of β2,t with respect to t,
it holds for all t satisfying τ ≤ t ≤ T . Thus n2,T = n2,τ ≤ τ . Let τ(∆, δ) be the lowest
such τ for a given choice of ∆ and δ (we can solve for τ(∆, δ) from the definition of
β2,τ (δ)). Then

RT ≤ ∆ (τ(∆, δ) ∨ T ) .

This is an instance-dependent constant-probability regret bound. We can obtain a
worst-case bound on expected regret using the previously described method of bounding
the regret on the complement of the good event by ∆T . A worst-case is then attained by
maximising this bound over ∆ and minimising over δ.

Working through the argument fully (and with slightly more careful analysis), Lattimore
et al. (2020) show that taking δ = 1/T ,

R̂(T, π) ≤ 8
√

2T log T + 3∆

for the thus defined algorithm π. The additive ∆ term is unavoidable. Any algorithm
must pull the suboptimal arm at least once. Furthermore, lower bounds show that for k
arms, a

√
kT term is also unavoidable (Lattimore et al., 2020, chapter 15). It is clear

therefore that for k ≥ T , we will need additional structure to obtain sublinear regret.

1.2.3 Linear UCB algorithms

We now turn to bandits with infinitely many arms, but where the payoff depends linearly
on the arm location. Specifically, we take X = [0, 1]d and assume that there exists a
θ⋆ ∈ Rd such that

f(x) = ⟨x, θ⋆⟩

for all x ∈ X and that ∥θ⋆∥2 ≤ R for some known constant R > 0. We observe
Yt = f(Xt) + εt with εt independent for each t and subGaussian.

The bound on the norm of θ⋆ can be interpreted as an assumption on the smoothness of
the payoff function, since

|f(x⋆)− f(x)| = |⟨θ⋆, x⋆ − x⟩| ≤ ∥θ⋆∥2∥x⋆ − x∥2 ≤ R∥x⋆ − x∥2 (x ∈ X ).
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Crucially, this smoothness allows us to use only a finite number of observations to
construct upper confidence bounds for f that hold jointly across all of [0, 1]d.

We proceed to bound f by constructing sets {Bt} such that with constant probability,
θ⋆ is contained within all Bt for t ≥ 1 and that the sets Bt are small. We do so using
linear ridge regression estimates for θ⋆. For each t ≥ 1, we find a θ̂t ∈ Rd that minimises
the ridge regression objective

t∑
τ=1

(
Yτ − ⟨θ̂t, Xτ ⟩

)2
+ λ∥θ̂t∥2

2,

for some regularisation parameter λ > 0.1 Stacking X1, . . . , Xt into a design matrix
X1:t ∈ Rt×d and Y1, . . . , Yt into a vector Y1:t, the solution to linear ridge regression is
given by

θ̂t = ΣtX
T
1:tY1:t where Σ−1

t = XT
1:tX1:t + λI.

We can bound the error in our estimation of f at location x and time step t using
Cauchy-Schwarz:

|ft(x⋆)− f(x)| = ⟨θ̂t − θ⋆, x⟩ ≤ ∥x∥Σ−1
t
∥θ̂t − θ⋆∥Σt .

The term ∥x∥Σ−1
t

is known the predictive standard deviation of the linear model at x, and
can be bounded using standard methods. For the other term, Abbasi-Yadkori et al. (2011)
show through a method-of-mixtures argument (Pena et al., 2004) that with probability
1− δ, for all t ≥ 1,

∥θ̂t − θ⋆∥Σt ≤
√

log det Σt

detλI + 2 log(1/δ) + λ1/2∥θ⋆∥2. (1.1)

The resulting confidence ellipsoid serves as the set Bt. The quantity log (det Σt/ detλI)
featuring here is the log reduction in the volume of a confidence ellipsoid for θ⋆ after
observing Ht, and is known as the information gain for θ⋆. It generalises ni,t for this linear
setting: when all selected arms are axis-aligned and at unit distance, log det Σt = ∑d

i=1 ni,t,
for ni,t a per-dimension arm-pull count. Generalisations of information gain will be a
core focus of our work.

Using thus constructed confidence intervals within the standard UCB algorithmic frame-

1The regularisation term λ∥θ̂t∥2
2 corresponds to constraining θ̂t to lie on a sphere of finite radius; this

corresponds to our prior knowledge that ∥θ⋆∥2 ≤ R for some R > 0.
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work results in regret bounded as

RT ≤ d
√
T log T +

√
dT log(T/δ),

with the resulting algorithm known as ‘optimism in the face of uncertainty, linear’ Abbasi-
Yadkori et al. (OFUL, 2011). The corresponding lower bound for this subGaussian linear
bandit problem on a convex hypercube is of the form Cd

√
T . OFUL is thus near-minimax

optimal for this setting (Lattimore et al., 2020, page 250).

1.2.4 OFUL with feature embeddings

To generalise OFUL to continuous functions, we now extend the contextual linear bandit
framework to the case where the mean reward function is linear in some given feature
embedding of the arm. That is, X = [0, 1]d and

Yt = ⟨θ⋆, φ(Xt)⟩+ εt

for a feature embedding φ : Rd 7→ Rd′ and weights θ⋆ ∈ Rd′ with ∥θ⋆∥2 ≤ R. This is
a very expressive representation. By Stone-Weierstrass, for an appropriate choice of φ
(for example, a sufficiently high order polynomial) this feature-linear formulation can be
used to uniformly approximate any continuous function on a compact domain.

For a given choice of φ and writing Φ1:t ∈ Rt×d′ for the design matrix formed by the
embeddings of the selected arms, φ(X1), . . . , φ(Xt), the standard ridge regression linear
model yields an estimate for θ̂t of the form

θ̂t = ΣtΦT
1:tY1:t where Σt =

(
ΦT

1:tΦ1:t + λI
)−1

,

which can in turn be used within the OFUL algorithm. Such extension is however of
limited utility. To be able to accurately express a broad set of continuous functions in
this feature-linear form, we require d′ to be large. On the other hand, running OFUL
requires the computation of Σt ∈ Rd′×d′ , an inversion with a cost that scales as d′3. This
gives an unpleasant trade-off between statistical accuracy and computational efficiency.

To get around this difficulty, we employ the kernel trick: we rewrite the solution to the
regularised linear regression such that it depends on the embeddings φ only through an
inner product ⟨φ(x), φ(x′)⟩ .= and identify a closed form expression for this inner product
that does not require evaluating φ. We refer to k : X × X 7→ R as the kernel function

33



associated with φ.

We now give an example of a kernel function. Consider the second order polynomial
feature embedding φ : Rd 7→ Rd′ , with d′ = d(d+ 1)/2, given by

φ : x 7→
(
x2

1,
(

d
2

)
x1x2, . . . ,

(
d
2

)
xdxd−1, x

2
d

)T
.

Computing ⟨φ(x), φ(x′)⟩ by explicitly evaluating φ(x) and φ(x′) and taking the Rd′ inner
product requires order d′ operations. However,

⟨φ(x), φ(x′)⟩ =
d∑

i,j=1
A2

ijxixjx
′
ix

′
j = (xTx′)2 where Aij =

1 i = j,(
d
2

)
otherwise,

and so taking k(x, x′) = (xTx′)2, we can evaluate this inner product in order d operations
instead. This generalises to order p polynomial features, with k(x, x′) = (xTx′)p giving a
complexity linear in d and independent of d′ and p.

To use kernels for regression, we rewrite the solution of feature-based linear ridge
regression so that it depends on X1:t only through the inner products of the corresponding
embeddings. Recall that for matrices U, V of appropriate sizes, (I + UV )−1U = U(I +
V U)−1, a result known as the push-through identity. Thus,2

⟨φ(x), θ̂t⟩ = φ(x)(ΦT
1:tΦ1:t + λI)−1ΦT

1:tY1:t = φ(x)ΦT
1:t(Φ1:tΦT

1:t + λI)−1Y1:t.

With a suitable kernel k, we then have

[φ(x)ΦT
1:t]i = k(x,Xi) and [Φ1:tΦT

1:t]ij = k(Xi, Xj),

for an overall computational complexity of order Cdt
3, independent of d′. The resulting

method is referred to as kernel ridge regression.

With an adjustment in the construction of the parameter confidence sets, kernel ridge
regression can be integrated within the OFUL framework, yielding the GP-UCB algorithm
for the optimisation of continuous functions (Chowdhury et al., 2017). We return to this,
after the next chapter, where we develop a more formal understanding of kernels and
kernel-based regression.

2This formulation of ridge regression is referred to as the function-space view, since we are es-
timating the function f(x) = ⟨φ(x), θ⋆⟩ directly. In contrast, the previous approach where we focus
on the weights θ⋆ is the weight-space view.
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Chapter 2

Kernels and regression

In this chapter, we provide the theoretical background necessary for the analysis of
kernel-based optimisation algorithms for functions with a known number of derivatives.
In particular:

• We define Sobolev spaces and show how these correspond to specifying desired
smoothness conditions. We identify Sobolev Hilbert spaces as suitable for kernel-
based regression and show how these can be defined on convex sets using the Fourier
transform and restrictions.

• We define kernels and their corresponding reproducing kernel Hilbert spaces (RKHS).
We show multiple characterisation of RKHSs, and in particular one using the Fourier
transform and restrictions. We use this to establish a connection between Sobolev
Hilbert spaces and the RKHSs of kernels belonging to the Matérn family.

• We provide a more rigorous introduction to kernel ridge regression, with a focus on
quantities that appear within the kernel-based version of OFUL (Abbasi-Yadkori,
2009), and show its relation to conjugate Gaussian process regression.

• We introduce the effective dimension of a kernel ridge regressor and the information
gain associated with conjugate Gaussian process regression and discuss the manner
in which these can be considered measures of the complexity of the regression
problem. We demonstrate their near-equivalence.

We recap key results from this chapter at the start of the next.
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2.1 Function spaces

The optimisation problem we tackle assumes a payoff function f : [0, 1]d 7→ R with a
known number of derivatives. Here, we build up some definitions and results around
Sobolev Hilbert spaces, which turn out to be the right spaces in which to reason about f .

2.1.1 Continuity classes

For a multi-index α ∈ Nd, we refer to |α| = ∑d
i=1 αi as its degree and denote the standard

partial differentiation operator by

Dα =
(
∂α1

∂xα1
, . . . ,

∂αd

∂xαd

)T

.

We denote the set of all continuous functions on U ⊂ Rd open by C(U) and we write Cs(U)
for the s-continuity class on U , the set of functions u : U 7→ R such that Dαu ∈ C(U) for
all |α| ≤ s. That is, functions with s-many continuous derivatives on U .

We then define C(Ū) as the set of functions u ∈ C(U) that can be extended continuously
to Ū , the closure of U . Equipped with the norm

∥u∥C(Ū) = sup
x∈U
|u(x)|,

C(Ū) forms a Banach space. Similarly, we define Cs(Ū) as the set of functions u ∈ Cs(U)
such that Dαu continuously extends to Ū for all |α| ≤ s. Equipped with the norm

∥u∥Cs(Ū) = max
|α|≤s

sup
x∈U
|Dαu(x)|,

these too form Banach spaces.

We also consider the following more fine-grained partition of C(Ū) for continuous functions
without (strong) derivatives. We say that a function u ∈ C(Ū) is γ-Hölder continuous if

|u(x)− u(y)| ≤ L|x− y|γ

for some L > 0 and 0 < γ ≤ 1. When γ = 1, we say u is Lipschtiz continuous. We
formalise the class of all γ-Hölder continuous functions by defining the γ-Hölder seminorm
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of u : U 7→ R,

[u]C0,γ(Ū) = sup
x,y∈U,x ̸=y

(
|u(x)− u(y)|
|x− y|γ

)
,

and constructing the γ-Hölder norm as

∥u∥C0,γ(Ū) = ∥u∥C(Ū) + [u]C0,γ(Ū).

γ-Hölder continuous functions on Ū are then functions with finite C0,γ(Ū) norm.

We use the notion of Hölder continuity to construct function classes Cs,γ(Ū) between
Cs(Ū) and Cs+1(Ū) for any s ∈ N and 0 < γ ≤ 1. These consist of all u ∈ Cs(Ū) such
that

∥u∥Cs,γ =
∑

|α|≤s

∥∂αu∥C(Ū) +
∑

|α|=s

[∂αu]C0,γ(Ū)

is finite.

2.1.2 Sobolev spaces

The inner product form of the kernel regressor will require that we work in a Hilbert
space. We now define Sobolev spaces, which suitably generalise continuity classes, and
then look at a subset of these that form Hilbert spaces.

We begin with Lebesgue spaces. For U ⊂ Rd and p, 1 ≤ p < ∞, the Lebesgue space
Lp(U) is the set of functions p-integrable with respect to the Lebesgue measure. That is,
measurable functions f : U 7→ R for which the seminorm

∥f∥Lp(U) =
(∫

U
|f(x)|pdx

)1/p

is finite. Lp(U) can be extended to p = ∞ using the notion of essential boundedness.
A function f is essentially bounded if for some M < ∞, |f | ≤ M almost everywhere.
The space L∞(U) is then the space of all essentially bounded functions, with the lowest
essential bound for a given element serving as the seminorm. For a measure µ, we will
write Lp

µ(U) to denote the space of functions p-integrable with respect to µ.

Lebesgue spaces can be used to construct corresponding Banach spaces, with norm
given by the Lebesgue seminorm and considering the elements as equivalence classes
of functions equal Lebesgue-almost-everywhere. We will do this throughout and ignore
the distinction between functions and equivalence classes. Where it exists, we will always
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work with the unique continuous representative of each class. For p = 2, the resulting
Banach space equipped with the inner product

⟨f, g⟩L2(U) =
∫
g(x)f(x)dx

forms a Hilbert space.

With that, we are ready to define Sobolev spaces.

1 Definition. For s ∈ N, 1 ≤ p ≤ ∞ and U ⊂ Rd open, the Sobolev space Ls,p(U) is
given by

Ls,p(U) = {f ∈ Lp(U) : Dαf ∈ Lp(U) for all α with |α| ≤ s},

equipped with the norm ∥f∥Ls,p(U) = ∑
|α|≤s ∥Dα∥Lp(U).

It is easy to verify then that the Sobolev spaces Ls,p(U) are Banach spaces. Moreover,
Ls,2(U) spaces can be made into Hilbert spaces by taking the inner product

⟨f, g⟩Ls,2(U) =
∑

|α|≤s

⟨Dαf,Dαg⟩L2(U).

We refer to such spaces as Sobolev Hilbert spaces. Taking p = ∞, we recover (up to
measure zero) the standard continuity classes.

Sobolev spaces allow us to trade-off integrability and smoothness. To make this more
precise, we will need the following definition.

2 Definition. For U ⊂ Rd open, its boundary is the set ∂U = Ū \ U . We say that U is
Lipschitz if ∂U can be expressed as the graph of a Lipschitz function.

Crucially, any convex set is Lipschitz. With that in place, we have:

3 Rellich-Kondrachov theorem (Adams et al. (2003)). Let U ⊂ Rd be open with a
Lipschitz boundary. Then for mp > d > (m− 1)p and all λ satisfying 0 < λ ≤ m− d/p,
Ls+m,p(U) can be continuously embedded in Cs,λ(Ū).

Informally, the Rellich-Kondrachov theorem states that we can trade Lp(U) derivatives
for L∞(U) derivatives at a cost of d/p orders of smoothness.
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2.1.3 Fourier characterisation of Sobolev Hilbert spaces

We now focus on the Sobolev Hilbert spaces Ls,2(U). We provide an alternative charac-
terisation of these that uses the Fourier transform and a suitable extension operator.

We define the Fourier transform as the unitary operator on L1(Rd) given by

(Ff)(ω) = (2π)−d/2
∫
Rd
f(x)ei⟨x,ω⟩dx

with a corresponding inverse

(F−1g)(x) = (2π)−d/2
∫
Rd
g(ω)e−i⟨x,ω⟩dω.

The pair F , F−1 can be continuously extended to operators on L2(Rd), a result referred
to as Plancherel’s theorem. We do not distinguish between F , F−1 and their extensions.
Throughout, ω will denote a generic argument for the Fourier transform of a function.

For u, v ∈ L2(Rd), the Fourier transform operator F has the following useful properties:

1. Unitary, ⟨u, v⟩ = ⟨Fu,Fv⟩

2. Differentiation, (FDαu)(ω) = (iω)|α|Fu

3. Convolution, u ∗ v = (2π)d/2⟨Fu,Fv⟩

With that, we have the following characterisation of Sobolev Hilbert spaces on Rd.

4 Definition. We define the Sobolev Hilbert space Hs(Rd) by

Hs(Rd) = {f ∈ L2(Rd) : (Ff)(ω)(1 + ∥ω∥2
2)s/2 ∈ L2(Rd)}

equipped with the inner product

⟨f, g⟩Hs = (2π)−d/2
∫
Rd

(Ff)(ω)(Fg)(ω)(1 + ∥ω∥2
2)sdω

and the norm induced by the inner product.

Using the unitary and differentiation property of Fourier transforms, we can confirm
that the thus defined spaces Hs(Rd) are norm equivalent to Ls,2(Rd). However, since the
Fourier transform is a global operation, a similar statement for U ⊂ Rd is not immediate.
For that, we will need the following extension theorem.
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5 Theorem (E. M. Stein (1970), Theorem 5′). Let U ⊂ Rd be open and Lipschitz. Then
there exists a linear operator E mapping functions on U to functions on Rd with the
properties

i. E(f)|U = f , that is, E is an extension operator;

ii. E maps Ls,p(U) continuously into Ls,p(Rd) for all p, 1 ≤ p ≤ ∞, and all non-
negative integral s.

Moreover the norms of these mappings have bounds which depend only on s, d and the
boundary of U .

Theorem 5 allows us to define Hs(U) as the set of measurable functions u : U 7→ R with
finite quotient norm ∥u∥Hs(U), given by

∥u∥Hs(U) = inf
{
∥f∥Hs(Rd) : f |U = u

}
.

Since the norm of the relevant extension operators is bounded independently of u, the
thus defined space Hs(U) is norm-equivalent to Ls,2(U).

2.2 Kernels and reproducing kernel Hilbert spaces

In our work kernels will be used to define both the problem class and our solutions.
We now formalise the concept of a kernel. The following definitions and theorems are
from chapter 4 of Christmann et al. (2008) and chapter 10 of Wendland (2004)—we
strongly recommend both for a more in-depth introduction to the topic.

6 Definition. For X a non-empty set, a function k : X × X 7→ R is called a kernel on
X if there exists a Hilbert space H and a map φ : X 7→ H such that for all x, y ∈ X we
have

k(x, y) = ⟨φ(x), φ(y)⟩H .

We call φ a feature map and H a feature space of k.

The following alternative characterisation is easier to verify in practice.

7 Theorem. A function k : X × X 7→ R is a kernel if and only if it is symmetric and
positive definite.

While multiple feature maps and feature spaces can correspond to an individual kernel,
with each kernel we can associate a canonical feature space Hk called the Reproducing
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Kernel Hilbert Space (RKHS) of k. To define this canonical feature space, we need:

8 Definition. Let H be a real Hilbert space of functions f : X 7→ R. A function
k : X × X 7→ R is called a reproducing kernel for H if:

i. k(·, y) ∈ H for all y ∈ X , and

ii. f(y) = ⟨f, k(·, y)⟩H for all f ∈ H and all y ∈ X .

Reproducing kernels and kernels coincide. If k is the reproducing kernel for Hk, then k

is symmetric and positive definite (Wendland, 2004, Theorem 10.4). On the other hand,
each symmetric and positive definite k is the reproducing kernel for some RKHS Hk with
the feature map φ(y) = k(·, y). For a given kernel k, we can construct Hk directly.

9 Theorem. Let H ′
k(X ) = span{k(·, x) : x ∈ X} and equip this space with the bilinear

form 〈
N∑

j=1
αjk(·, xj),

M∑
k=1

βkk(·, yk)
〉

H′
k

=
N∑

j=1

M∑
k=1

αjβkk(xj, yk).

Then ⟨·, ·⟩H′
k

is an inner product on H ′
k. Furthermore, H ′

k is a pre-Hilbert space with
reproducing kernel k and the completion of H ′

k is Hk.

From this construction we see that Hk corresponds to the space of functions that can
be represented by kernel ridge regression with kernel k. We now provide alternative
constructions for Hk using Bochner’s and Mercer’s theorems.

2.2.1 Bochner’s theorem

Bochner’s theorem characterises stationary kernels in terms of their Fourier transform.
We call a kernel k stationary if k(x, y) = κ(x− y) for some κ : Rd 7→ R.

10 Theorem (Bochner). A continuous function κ : Rd 7→ R is positive semi-definite if
and only if it is the Fourier transform of a finite non-negative Borel measure on Rd.

The following is an immediate consequence of Bochner’s theorem.

11 Theorem. Suppose k is a stationary kernel given by function κ ∈ C(Rd) ∩ L1(Rd).
Define

H =
{
f ∈ L2(Rd) ∩ C(Rd) : Ff√

Fκ
∈ L2(Rd)

}
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and equip H with the inner product

⟨f, g⟩H =
〈
Ff√
Fκ

,
Fg√
Fκ

〉
L2(Rd)

=
∫
Rd

(Ff)(ω)(Fg)(ω)
(Fκ)(ω) dλ(ω).

Then H and Hk are isomorphic.

The quantity Fκ is referred to as the spectral density of k. Henceforth, we will drop the
distinction between k and κ and write k(x, y) = k(x− y) when k is a stationary kernel.

As in the case of Sobolev Hilbert spaces, we can generalise this result for subsets of Rd

through the use of restrictions:

12 Theorem (Aronszajn (1950), section I.5). Let S be a set and Hk(S) an RKHS on
S with reproducing kernel k and norm ∥ · ∥Hk(S). Then for a set U ⊂ S, k|U is the
reproducing kernel of Hk(U) with the quotient norm ∥u∥Hk(U) = min{∥f∥Hk(S) : f |U = u}.

Indeed, we shall shortly use Bochner’s theorem and this restriction result to demonstrate
norm equivalence between certain Sobolev Hilbert spaces and the RKHSs of Matérn
family kernels.

2.2.2 Mercer’s theorem

For X a compact set and Hk(X ) a separable RKHS on X with reproducing kernel k,
Mercer’s theorem constructs a basis for Hk(X ) consisting of the eigenfunctions of an
associated kernel integral operator. For µ a measure with full support on X , we define
T̃k : L2

µ 7→ C(X ) to be the integral operator

T̃k : f 7→
∫
k(·, x)f(x)dµ(x), (2.1)

and Tk : L2
µ(X ) 7→ L2

µ(X ) to be the composition of T̃k and the inclusion C(X ) ↪→ L2
µ(X ).

Tk is referred to as the integral operator of k on L2
µ(X ). It is straightforward to show Tk

is compact, positive and self adjoint. Therefore, by the spectral theorem, there exists a
countable orthonormal set {ϑ̃j}j∈J of L2

µ(X ) and a sequence {λj}j∈J with λ1 ≥ λ2, · · · > 0
such that

Tkf =
∑
j∈J

λj

〈
f, ϑ̃j

〉
ϑ̃j (f ∈ L2

µ(X )). (2.2)

Moreover, each ϑ̃j has a continuous representative ϑj = λ−1
j T̃kϑ̃j. It is immediate that

Tkϑi = λiϑi for all i ∈ J , and thus {(λi, ϑi) : i ∈ J} form an eigensystem for Tk. This
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diagonalisation result allows us to express the kernel k in terms of the series

k(x, y) =
∑
j∈J

λjϑj(x)ϑj(y),

which converges uniformly on X ×X and absolutely for each (x, y) ∈ X ×X . This latter
result is known as Mercer’s theorem. The following is a direct consequence:

13 Theorem. With the assumptions and notations of Mercer’s theorem, define

H =

∑
j∈J

ajϑj :
 aj√

λj

 ∈ ℓ2


and equip H with the inner product〈∑

i∈J

aiϑi,
∑
j∈J

bjϑj

〉
H

=
∑
j∈J

ajbj

λj

and the norm induced by ⟨·, ·⟩H . Then H and Hk are isomorphic.

Mercer’s theorem and the associated integral operator will form the basis of our analysis
of kernel-based optimisation in chapter 4. For that later use, it is important to note that
the operator Tk depends both on the kernel k and the measure with respect to which it
is defined (µ in the above notation), and therefore so does its eigendecomposition.

We will make frequent use of the following observations around Mercer’s theorem:

1. For µ the uniform measure on a finite set X = {x1, . . . , xm}, the corresponding
integral operator is the Gram matrix [K]ij = k(xi, xj) and the diagonalisation
result corresponds to the finite-dimensional eigendecomposition of K.

2. For k a stationary kernel, the integral operator Tk is a convolution against k and
can thus be evaluated using the convolution property of the Fourier transform.

3. When k is stationary and periodic on the interval Id = [0, 2π]d, we can represent it
by the Fourier series as

k(x) =
∞∑

n=−∞
cne

−i⟨n,x⟩ where cn =
∫
k(x)e−i⟨n,x⟩dx.

The sequence {cn} are the Fourier coefficients for k. Note that {(cn, e
−i⟨n,x⟩) : n ∈ Z}

is an eigendecomposition of k.
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4. For U an enlargement of X (Minkowski sum with a ball), any stationary kernel on
X can be written as the restriction of a periodic kernel on U .

2.2.3 The Matérn family of kernels

We now look at Matérn kernels, introduced by M. L. Stein (1999) and named after the
work of Matérn (1960) on spatial interpolation. For ν > 0, the Matérn-ν kernel on Rd is
the stationary kernel given by

kν : x 7−→ 21−ν

Γ(ν)

(
∥x∥2
√

2ν
ℓ

)ν

Bν

(
∥x∥2
√

2ν
ℓ

)
,

where ℓ > 0 is a lengthscale parameter, Γ denotes the Gamma function and Bν is the
modified Bessel function of the second kind. Its spectral density is

Sν(ω) .= (Fkν)(ω) = 2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)ℓ2ν

(2ν
ℓ2 + 4π∥ω∥2

2

)−(ν+d/2)
.

That is, the Lebesgue density of a student-t distribution. From theorem 11 and definition 4,
the RKHS Hkν (Rd) is norm equivalent to Hν+d/2(Rd). Therefore by the 3, the functions
in Hkν (Rd) have ⌊ν⌋ strong derivatives. For ν ≤ 1, they are ν-Hölder continuous. By
theorem 12 and theorem 5, the Matérn kernel for U ⊂ Rd convex (and the corresponding
RKHS) can be obtained by restriction.

Evaluating the Matérn kernel for general ν has to be done numerically. However, where
ν = p+ 1/2 for p ∈ N, the Matérn kernel is given by the expression

kp+1/2 : x 7→ exp
(
−∥x∥2

√
2p+ 1
ℓ

)
p!

(2p)!

p∑
i=0

(p+ i)!
i!(p− i)!

(
2∥x∥2

√
2p+ 1
ℓ

)p−i

,

and is therefore easy to compute. The corresponding RKHS contains p-times differentiable
functions. Practical use of the Matérn kernel is generally limited to the first three Matérn
integer-and-a-half kernels, given by

kν = Mν,ℓ(x) exp
(
−∥x∥2

ℓ

)
for Mν,ℓ(x) =


1 ν = 1/2,

1 + ∥x∥2
ℓ

ν = 3/2,

1 + ∥x∥2
ℓ

+ ∥x∥2
2

3ℓ2 ν = 5/2.

Functions with three or more derivatives are often modelled using the Squared Exponential
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kernel
kSE(x) = lim

ν→∞
κν(x) = exp

(
∥x∥2

2
2ℓ2

)
,

which has a Gaussian spectral density and RKHS HkSE(Rd) = ⋂
ν>0 Hkν (U) containing

smooth functions only.

2.3 Function estimation in kernel spaces

With the benefit of a more rigorous introduction to kernels, we now formalise the
kernelised linear ridge regressor sketched in the previous chapter.

We begin with some definitions. For observations Ht and a regularisation parameter
λ > 0, we write (µt, σt) = GPR(λ,Ht) for the output of kernel ridge regression, where

µt(x) = kt(x)(Kt + λI)−1Y1:t and σ2
t (x) = k(x, x)− kt(x)(Kt + λI)−1kT

t (x)

with kt(x) = (k(x,X1), . . . , k(x,Xt))T and [Kt]ij = k(Xi, Xj). The kernel used will be
specified in context where relevant. We call µt the mean function, σ2

t the variance function
and Kt the Gram matrix. We will associate with the regressor the quantity

γt = 1
2 log det

(
I + λ−1Kt

)
,

which we call the information gain.

With the notation in place, consider the following extension of the OFUL concentration
inequality to kernel ridge regression, derived originally in Abbasi-Yadkori (2009) and
later rederived (in a weaker form) and popularised by Chowdhury et al. (2017).

14 Theorem. Let Hk(X ) be an RKHS on X ⊂ Rd with reproducing kernel k. For T ∈ N,
let H1 ⊂ . . . ⊂ HT be a sequence of histories with Ht = (X1, Y1, . . . , Xt, Yt), where
Yt = f(Xt) + εt for f ∈ Hk(X ) with ∥f∥Hk(X ) ≤ R and εt conditionally subGaussian with
constant B. Then for (µt, σt) = GPR(1 + 1/T,Ht), with probability 1− δ,

|µt(x)− f(x)| ≤ σt(x)
(
R + B

√
2(γt + log(1/δ))

)

for all x ∈ X and all t ≤ T .

This concentration inequality is used to prove regret bounds for a kernelised version of
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OFUL. We will look at its use in detail over the course of the next two chapters, but
first we build some intuition for the quantities featuring within it. We do so from two
perspectives:

1. A classical take based on kernel ridge regression. This is common in literature on
frequentist statistics, optimal experimental design, control and bandit algorithms.

2. A Bayesian perspective, through an equivalence with conjugate Gaussian process
regression, used in the context of Bayesian statistics and Bayesian optimisation.

For a broader overview of the relationship between the two perspectives, see the excellent
monograph by Kanagawa et al. (2018). We will end the chapter on an implementation note,
in particular an outline of a useful online method of updating Cholesky decompositions of
Gram matrices. For more general information on the implementation of these regression
methods consult chapter 2 of Rasmussen et al. (2006).

2.3.1 Kernel ridge regression

We begin with the classical take. We assume X is a compact subset of Rd and denote by
X1:t = (Xi)t

i=1 ⊂ X some input locations with corresponding values Y1:t = (Yi)t
i=1 ⊂ R.

Then, for a kernel k on X and a regularisation parameter λ > 0, the kernel ridge regression
problem is that of finding a function mt ∈ Hk(X ) minimising

t∑
i=1

(Yi −mt(Xi))2 + λ ∥mt∥2
Hk(X )

This can be interpreted as finding a function that fits the observed values well while
remaining smooth, in a sense defined by the RKHS norm. Perhaps somewhat surprisingly
(or not), the minimiser of the kernel ridge regression objective lies in an t-dimensional
dimensional subspace of Hk(X ).

15 Theorem (Representer Theorem). The minimiser of the kernel ridge regression
objective is of the form ∑t

i=1 αik(Xi, ·) with α1, . . . , αt ∈ Rt.

Proof. Let S = span {k(x, ·) : x ∈ X}. S is finite dimensional and therefore a closed
subset of Hk(X ). By the projection theorem, Hk(X ) = S⊕S⊥. That is, all f ∈ Hk(X ) can be
written as the sum of some fS ∈ S and fS⊥ ∈ S⊥ with ⟨fS, fS⊥⟩ = 0. Let f be a minimiser
of the objective. Then f(Xi) = ⟨k(xi, ·), fS + fS⊥⟩ = fS(Xi) + ⟨k(Xi, ·), fS⊥⟩ = fS(Xi).
Moreover, ∥f∥Hk(X )

= ∥fS∥Hk(X )
+ ∥fS⊥∥Hk(X )

≥ ∥fS∥Hk(X )
. On the other hand, since
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f minimises the objective and agrees with fS on X, ∥f∥Hk(X )
≤ ∥fS∥Hk(X )

. Therefore
f = fS.

This result reduces solving the kernel ridge regression problem to identifying a t-
dimensional vector. We use this to write

mt(Xj) =
〈
k(xj, ·),

n∑
i=1

αik(xi, ·)
〉

H

= [Ktα]j,

where α = [α1, . . . , αt]T and we used that k is the reproducing kernel of Hk(X ). This
allows us to rewrite the ridge regression objective in the form

∥y −Ktα∥2
2 + λαTKtα.

This is a sum of two convex terms and therefore convex. Differentiating shows that
the optimal parameters are given by α⋆ = (Kt + λI)−1Y1:t, a linear combination of the
observations Y1:t. The resulting optimal mt is then given by

mt(x) = kt(x)α⋆ = kt(x)(Kt + λI)−1Y1:t,

and thus mt = µt.

We can can obtain a measure of confidence within kernel ridge regression by using ridge
leverage scores. The ridge leverage score for a data point (Yi, Xi) is the derivative of
m(Xi) with respect to Yi and is given by

τi
.= ∂m(Xi)

∂Yi

= [Kt(Kt + λI)−1]ii.

Clearly, 0 < τi < 1. Where τi is near to zero, changing Yi does not change m(Xi) by
much and we can think of the regression at that point as being strongly determined by
previous observations. The opposite holds for τi ≈ 1.

Ridge leverage scores are proportional to the variance function evaluated on the data
points:

16 Theorem. With the established notation, σ2
t (Xi) = λτi.

Proof. Let P be the symmetric square root of Kt and let ei ∈ Rt be the ith unit vector
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in the standard basis of Rt. Then

σ2
i (Xi) = eT

i Ktei − eiK
T
t (Kt + λI)−1Ktei

= eT
i P (I − P (Kt + λI)−1P )Pei

= eT
i P (I − (Kt + λI)−1Kt)Pei, (2.3)

where the last line uses the push-through identity. Next, premultiplying (Kt +λI)−Kt =
λI by (Kt + λI)−1 we obtain I − (Kt + λI)−1Kt = λ(Kt + λI)−1. Substituting this into
eq. (2.3) and applying the push-through identity gives

σ2
i (Xi) = λeT

i P (Kt + λI)−1Pei = λ[Kt(Kt + λI)−1]ii = λτi.

Another quantity of interest is the effective dimension, which is the sum of the ridge
leverage scores,

d′
t
.=

t∑
i=1

τi = Tr
[
EΛ(Λ + λI)−1ET

]
=

t∑
i=1

λi

λi + λ
,

where EΛET is the eigendecomposition of Kt and we used that Kt and Kt + λI are
simultaneously diagonalisable, and λ1 ≥ . . . ≥ λt ≥ 0 are the eigenvalues of Kt. Consider
the case where τi ≈ 1 for each i. Then each prediction y⋆

i is near-orthogonal to any other
y⋆

j with i ≠ j, and hence the regression problem can be thought to have approximately
dim y⋆ degrees of freedom. On the other hand, when this sum of ridge leverage scores is
low relative to the number of observations, the regression can be determined by a small
subset of the dimensions. The effective dimension is an object of frequent interest in
sketching algorithms, where it is approximately the number of points that need to be
retained to accurately approximate the full regression (Yang et al., 2017). We will shortly
show that effective dimension is equal to information gain, up to a logarithmic factor.

2.3.2 Gaussian process regression

We now look at the same regressor from the perspective of Bayesian inference with
a conjugate Gaussian model. Here, we assume that the target function is a random
process F on the domain X , for which any finite marginal FA for A ⊂ X has a Gaussian
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distribution with moments

E[FAi
] = 0 and Cov[FAi

, FAj
] = k(Ai, Aj)

for a given symmetric positive definite covariance function k : X × X 7→ R. That is, we
assume F is a centred Gaussian process with covariance kernel k. We assume that we
have observed noisy realisations of the Gaussian process at locations X1, . . . , Xt, of the
form

YXi
= FXi

+ εi,

where ε1, . . . , εt are independent zero mean Gaussian random variables with variance
λ > 0, and that we are interested in finding the least-squares estimator of the realisation
of F . By definition, this is the conditional expectation of F given YX .

Consider the random vector [YX ;FZ ]T . From the problem definition,
YX

FZ

 ∼ N
0

0

 ,
KXX + λI KXZ

KZX KZZ

 , (2.4)

where KZX is a matrix with entries [KZX ]ij = k(Zi, Xj). The conditional FZ |YX can
be computed from this joint using standard results on Gaussian conditioning (see, for
example, K. B. Petersen et al., 2008). It is again Gaussian, with moments

E[FZ |YX ] = KXZ(KZZ + λI)−1YX , and (2.5)

Cov [FZ , FZ |YX ] = KZZ −KZX(KXX + λI)−1KXZ . (2.6)

Since Z was a finite but otherwise arbitrary subset of X , Kolmogorov’s extension theorem
gives that F |YX is a Gaussian process on X with posterior mean µt and posterior variance
σ2

t , that is those corresponding exactly to our previously defined regressor.

We make two observations:

1. Computing the Gaussian process posterior distribution requires only the manipula-
tion of finite dimensional Gaussian distributions.

2. The expression for the posterior variance is the Schur complement of the covariance
matrix in eq. (2.4); it depends only on the input locations X and not on YX .

This perspective on kernel-based regression provides insight on information gain. Denote
by I(A;B) the mutual information between random variables A and B. Then:
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17 Lemma. For conjugate Gaussian process regression on a domain X with a gram
matrix KXX and likelihood variance λ,

I(F ;YX) = I(FX ;YX) = 1
2 log det(1 + λ−1KXX) .= γ|X|.

That is, γ|X| is the decrease in entropy of F after observing YX . The proof relies on
standard properties of mutual information (see, for example, chapter 2 of Cover (1999)).

Proof. I(F ;YX) = I(FX ;YX) follows from Fubini’s theorem. To find a closed form
expression for I(FX ;YX), we use symmetry of mutual information and write it as

I(FX ;YX) = I(YX ;FX) = H(YX)−H(YX |FX),

where H(A) denotes entropy of a random variable A. Consider YX and YX |FX in turn:

1. Since YX ∼ N (0, KXX + λI), a standard result gives

H(YX) = 1
2 log det(2πe (λI +KXX)

= |X|2 log (2πeλ) + 1
2 log det

(
I + λ−1KXX

)
.

2. For YX |FX , note first YX = FX + εX for some εX ∼ N (0, λI). Therefore

H(YX |FX) = H(FX + εX |FX) = H(εX |FX) = H(εX) = |X|2 log (2πeλ) ,

where we used that for a constant, H(a+A) = H(A) and εX is independent of FX .

Combining the two results, we obtain the second equality.

Like effective dimension, information gain can be thought to quantify the complexity of
a regression problem. When the maximum amount of information that can be gained
with each new observation decreases quickly, a small number of well-chosen observations
can be used to accurately approximate the result of the full conjugate Gaussian process
regression. Crucially for our later contributions, maximum information gain depends on
the domain X . Quantifying this relationship for the Matérn kernel will be one of our
main contributions in this part of the thesis.

The log ratio of confidence ellipsoid volumes featuring in the OFUL concentration
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inequality is a special case of the information gain defined here. Specifically, for X ∈ Rt×d

and with a linear kernel, such that KXX = XXT , we have

log det(I + λ−1KXX) = log det(XTX + λI)
det(λI) ,

which is exactly the log det Σt

det λI
term featuring in the OFUL confidence sets.

2.3.3 Connecting information gain and effective dimension

We now relate information gain and effective dimension. First, we need that predictive
variance is monotonous in the number of observations:

18 Lemma. For Ht−1 ⊂ Ht, σ2
t−1(x) ≥ σ2

t (x) for all x ∈ X .

Proof. Fix an arbitrary x ∈ X and ∆t = σ2
t−1(x)− σ2

t (x). We wish to show that ∆t ≥ 0.
By definition,

∆t = kT
t (x) (Kt + λI)−1 kt(x)− kT

t−1(x) (Kt−1 + λI)−1 kt−1(x),

which we write as bT
t

(
A−1

t − Ã−1
t−1

)
bt for At = Kt +λI, bt = kt(x) and Ã−1

t−1 =
A−1

t−1 0
0 0

.

The result follows by observing that A−1
t −Ã−1

t−1 ⪰ 0. Specifically, writing mt−1 = At−1bt−1,
by the Woodbury identity,

A−1
t − Ã−1

t =
At−1 bt−1

bT
t−1 ∥bt−1∥2 + λ

−1

− Ã−1
t = (At \ At−1)−1

mt−1m
T
t−1 −mt−1

−mT
t−1 1

 ,
which is clearly positive semi-definite.

Next, we bound sums of online predictive variances by information gain. The result is
of independent interest for the analysis of kernel-based algorithms. It first appeared in
Srinivas, Krause, S. M. Kakade et al. (2009) where it was proved using probabilistic and
information theoretic arguments. We provide an algebraic proof.

19 Lemma (Sum of variances and information gain). For a kernel k with k(x, x) ≤ λ

for all x ∈ X , we have

λ−1
t∑

i=1
σ2

i (Xi) ≤ 2 log det(I + λ−1Kt).
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Proof. With the usual notation, we write each Ki for i ≤ t recursively as

Ki =
 Ki−1 ki(Xi)
kT

i (Xi) k(Xi, Xi)

 .
Then, by Schur’s determinant lemma,

det(I + λ−1Ki) = det(I + λ−1Ki−1)(1 + λ−1Ki/Ki−1), (2.7)

where Ki/Ki−1 denotes the Schur complement of Ki and we take K1/K0 = K1. Applying
the lemma recursively and noting that Ki/Ki−1 = σ2

i (Xi), we have

log det(I + λKi) = log
t∏

i=1
(1 + λ−1Ki/Ki−1) =

t∑
i=1

log(1 + λ−1σ2
i (Xi)).

The result follows by noting that

0 < λ−1σ2
i (Xi) ≤ λ−1k(x, x) ≤ 1 and so 2 log(1 + λ−1σ2

i (Xi)) ≥ λ−1σ2
i (Xi)

for all i ≤ t.

The relation between information gain and effective dimension is then:

20 Theorem (Calandriello, Carratino et al. (2019)). For a kernel k with k(x, x) ≤ λ for
all x ∈ X , the effective dimension d′

t and information gain γt are related by

d′
t ≤ 4γt ≤ 4d′

t(1 + log(λ−1t+ 1)).

Calandriello, Carratino et al. (2019) give the above theorem with stronger constants and
cite Hazan et al. (2007) for a key inequality in their proof. We could not find the cited
inequality in Hazan et al. (2007) or reproduce their stated constants. Our proof of the
second inequality follows that of Calandriello, Lazaric et al. (2017b).

Proof. For the first inequality, since σ2
i+1(x) ≤ σ2

i (x) for all x on the domain, we have

d′
t = λ−1

t∑
i=1

σ2
t (Xi) ≤ λ−1

t∑
i=1

σ2
i (Xi) ≤ 2 log det(I + λ−1Kt) = 4γt.
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To prove the second inequality, let {λi} be the eigenvalues of Kt ∈ Rt×t. Then,

log det(I + λ−1Kt) = log
t∏

i=1
(1 + λ−1λi) =

t∑
i=1

log(1 + λ−1λi),

where we used that the determinant of a matrix is the product of its eigenvalues. Now,

t∑
i=1

log(λi/λ+ 1) =
t∑

i=1
log(λi/λ+ 1)

(
λi/λ+ 1
λi/λ+ 1

)

=
t∑

i=1
log(λi/λ+ 1) λi/λ

λi/λ+ 1 +
t∑

i=1

log(λi/λ+ 1)
λi/λ+ 1

≤ log(λ1/λ+ 1)
t∑

i=1

λi

λi + λ
+

t∑
i=1

λi

λi + λ

= d′
t(1 + log(λ1/λ+ 1)),

where we used the linear bound log(x+ 1) ≤ x for x ≥ 0. The result follows by noting
that λ1 ≤

∑t
i=1 λi = t.

2.3.4 A note on implementation: online Cholesky decomposition

The main cost in computing the GP regressor given some data X, Y consisting of t
observations comes from the term (KXX + λI)−1, which requires Ct3 operations to
compute directly from scratch. Usually, a Cholesky decomposition and subsequent back-
solving is used in place of an explicit inversion (see Rasmussen et al. (2006), chapter
2 for details). In the case of sequential algorithms, where we have nested datasets
H1 ⊂ . . . ⊂ Ht and need to compute a regressor for each, we can significantly improve
the complexity of computing the t regressors with online updates. Specifically, writing

Ki =
 Ki−1 ki(Xi)
kT

i (Xi) k(Xi, Xi)

 =
Li−1 0
bT a

LT
i−1 b

0 a

 = LiL
T
i

we see that we can take b = Li−1ki(Xi) and a =
√
k(Xi, Xi)− bT b in the above to obtain

Li recursively from Li−1 in Ci2 operations for each i ≤ t.
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Chapter 3

Optimisation of functions
in a Matérn kernel RKHS

In this last introductory chapter of part I, we look at three bandit algorithms for continu-
ous functions: GP-UCB, SupKernelUCB (Valko, Korda et al., 2013) and Hierarchical
Optimistic optimisation (Bubeck et al., 2011). We also examine relevant algorithm-
agnostic lower bounds. Before doing so, we briefly restate our optimisation problem in
terms of the RKHS of a Matérn kernel and establish some notation.

The standard assumptions. We optimise a function f : [0, 1]d 7→ R in the RKHS
of a Matérn-ν kernel for ν > 0 known, with corresponding RKHS norm ∥f∥kν bounded
by some known constant R > 0. At each step t = 1, . . . , T we select an Xt ∈ [0, 1]d and
observe Yt = f(Xt) + εt, where εt is an independent B-subGaussian random variable.

We use the word optimise here to refer to both minimising regret and simple regret.
We will refer to f as the target function and Hkν

.= Hkν ([0, 1]d) as the target function
space. We denote the corresponding RKHS norm by ∥ · ∥kν and inner product by ⟨·, ·⟩kν .
We recall the following results on Hkν , established in chapter 2:

1. For 0 < ν < 1, functions in Hkν are ν-Hölder continuous.

2. For ν ∈ (1,∞) \ N, functions in Hkν have ⌊ν⌋ continuous derivatives everywhere.

Throughout, we will write (µt, σt) = GPR(λ,Ht) for a conjugate Gaussian process
regressor with kernel kν , the reproducing kernel of Hkν , and some likelihood variance
λ > 0, conditioned on data Ht = {(Xi, Yi) : i < t}. We denote by γt and d′

t the associated
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information gain and effective dimension respectively, which we recall differ by at most
a logarithmic factor (theorem 20 on page 52).

3.1 Lower bounds for Matérn RKHS regret

Scarlett, Bogunovic et al. (2017a) show that under the standard assumptions, the
worst-case expected regret for any algorithm π after T steps is lower bounded as

R̂(T, π) ≥ CT
d+ν

d+2ν . (3.1)

Their proof is constructive. They define a basic bump function g(x) ∈ [2ε,−2ε], ε > 0
with a maximum at 0 with value 2ε and with value less than ε outside of a ball of radius
w0 > 0. They then construct a set of potential target functions {fm} by offsetting the
bump functions g such that they form a w0-spaced grid on [0, 1]d. Under that construction,
any ε-optimal point for some fm is not ε-optimal for fm′ with m′ ̸= m and there are

M =
⌊( 1
w0

)d
⌋

potential target functions. Evaluating any point on the domain yields information as
to whether f = fm for one index m only. For given M , standard hypothesis testing
inequalities established the required number of samples to identify f ∈ {fm} as a function
of M . Higher M leads to a harder hypothesis testing problem, but the required decrease
in w0 leads to an increase in the RKHS norm of the target functions {fm}. The lower
bound is established by minimising w0 subject to the RKHS norm constraint.

In minimising worst-case expected regret under the standard assumptions, we are ef-
fectively designing algorithms that do well at this type of needle-in-the-haystack bump
problem. A proof of worst case regret for this case could be interpreted as a guarantee
that, when faced with a hard instance, the algorithm will revert to what is effectively
a grid-search. How fine that grid search needs to be is determined by the assumed
bound on the RKHS norm, R. Clearly, however the constructed example is an extreme
edge-case and algorithms that treat every problem as if it was this type of edge-case will
perform sub-optimally on easier problems. Much theoretical work now focuses explicitly
on specifying a measure of the hardness of a problem on a per-instance manner1 and
deriving bounds that depend explicitly on that quantity. A starting point for such

1For example, by the suboptimality gaps {∆i} for each arm in a finite bandit.
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Algorithm: GP-UCB
Parameters: δ ∈ (0, 1), T ∈ N
Initialisation: let H1 = ∅

For each t = 1, . . . , T :
1. Compute (µt, σt) = GPR(1 + 1/T,Ht)
2. Find Xt, a maximiser of

ut(x) = µt(x) + βt(δ)σt(x)

over [0, 1]d, where βt(δ) = R + B
√

2(γt + log(1/δ)).
3. Observe Yt corresponding to Xt and let Ht+1 = Ht ∪ {(Xt, Yt)}.

Figure 3.1: The base GP-UCB algorithm.

adaptivity when constructing algorithms that target worst-case regret is to ensure that
worst-case quantities used in the analysis of the algorithm do not appear in the algorithm
itself. We will return to this point frequently.

3.2 Gaussian process UCB algorithms

The term Gaussian process UCB algorithm could refer to any of a family of optimisation
algorithms that use Gaussian processes to construct confidence intervals for the target
function and act optimistically. The first analysis of such algorithms was given in Srinivas,
Krause, S. M. Kakade et al. (2009) and was an extension of the ConfidenceBall linear
algorithm Dani et al. (2008). For the purposes of this work, we will consider the extension
of OFUL introduced in Abbasi-Yadkori (2009) and later rederived by Chowdhury et al.
(2017) as the GP-UCB algorithm; we outline it in fig. 3.1.

3.2.1 Regret analysis

The following theorem gives the regret of GP-UCB in terms of information gain.

21 Theorem (Chowdhury et al. (2017)). The regret of the GP-UCB algorithm under the
standard assumptions is bounded as RT ≤ C

√
TγT (R + B

√
γT ) with constant probability.

The proof of this result is simple (given the concentration inequality in theorem 14),
and follows exactly the structure of the proof by Srinivas, Krause, S. M. Kakade et al.
(2009), which in turn closely resembles the proof for a finite-armed Gaussian bandit we
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presented in section 1.2, itself due to Auer, Cesa-Bianchi et al. (2002).

Proof of theorem 21. From the acquisition rule,

µt(Xt) + βtσt(Xt) = ut(Xt) ≥ ut(x⋆) = µt(x⋆) + βtσt(x⋆).

On the 1− δ event associated with theorem 14,

f(x⋆) ≤ µt(x⋆) + βtσt(x⋆) and −f(Xt) ≤ −µt(Xt) + βtσt(Xt).

Henceforth consider only this event. From our two observations, we have

rt = f(x⋆)− f(Xt) ≤ 2βtσt(Xt).

By monotonicity of βt, RT = ∑T
t=1 rt ≤ βT

∑T
t=1 σt(Xt). Applying Cauchy-Schwarz,

T∑
t=1

σt(Xt) ≤ C

(
T

T∑
t=1

σ2
t (Xt)

)1/2

.

Now note that the sum on the right hand side is the online effective dimension, and by
theorem 20 is bounded up to constant factors by the information gain γT . So,

RT ≤ CβT

√
TγT .

We shall shortly show that this bound is at least a factor of √γt/ι away from the
algorithm-agnostic lower bound given in eq. (3.1). Examining the proof for the cause:

1. The regret of GP-UCB is bounded by the sum of the confidence intervals at the
sampled locations X1, . . . , XT . This same step features in the finite-armed case
and is therefore likely tight.

2. Sums of squared confidence intervals are bounded by information gain. From
theorem 20, this is tight up to log factors.

Therefore any improvements will need to come in the form of tighter confidence intervals.

Worst case regret for GP-UCB can be established by bounding the the maximal informa-
tion gain for a given kernel and domain. But is the GP-UCB algorithm adaptive? Recall
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the expression for information gain,

γT
.= 1

2 log det
(
I + λ−1KT

)
.

While γT has no explicit dependence on the rewards Y1, . . . , YT , it depends on the sequence
X1, . . . , XT , which itself is given by the interaction of the bandit problem and the al-
gorithm. If we consider the algorithm as fixed, it is quite apparent that different bandit
problems will induce a different distribution over the selected arms and thus over γT .
Indeed, on a hard problem, we would likely see the algorithm sample near-uniformly
across the domain. Since points would be distant from each other on average, this would
lead to high information gain. On the other hand, in a problem with an easy to identify
maximum, points are likely to be clustered around this maximum and information gain
low. Hence, GP-UCB does adapt to the problem instance.

3.2.2 Computational complexity

The computational complexity of GP-UCB can be decomposed into two parts:

1. Conditioning: constructing (µt, σt) requires using an inverse of Kt + λI. With
online Cholesky updates, this takes order t2 computation per step.

2. Acquisition: finding Xt requires optimising ut over X . This can be done approx-
imately by discretising X into a finite set of points D, making predictions for all
x ∈ D and taking the maximum. Each prediction requires an order t2 vector matrix
product; computing the maximum requires order |D| log |D| operations.

The overall complexity is therefore bounded by

CT
(
T 2 + |D|T 2 + |D| log |D|

)
,

where the required cardinality of the discretisation D depends on the smoothness of the
functions in the RKHS. Smoother functions require a finer discretisation. We now look
at each of the two costs in more detail.

The cost of conditioning for Gaussian processes and that of prediction for a fixed number
of locations has been studied in-depth, with many methods proposed to reduce these. In
the Bayesian literature, these fall under the category of sparse input methods/variational
methods (M. Seeger et al., 2003; Quinonero-Candela et al., 2007; Bauer et al., 2016),
while in the kernel literature, under matrix sketching (Drineas et al., 2005; Alaoui et al.,

59



2015; Yang et al., 2017). Approaches from both of these fields tend to involve selecting a
small number of input points such that a (potentially modified) posterior based on those
points gives a good approximation to that resulting from using all of the data.

Calandriello, Carratino et al. (2019) integrate a sketching method from Calandriello,
Lazaric et al. (2017a) with GP-UCB and show that the resulting algorithms retains the
same regret bound (up to polylogarithmic factors) while providing provably improved
runtime complexity. Calandriello, Carratino et al. (2020) combine this with ideas
from Batch GP-UCB (Desautels et al., 2014) to obtain an even faster algorithm. The
computational complexity of the latter is bounded as

CT ≤ ιT
(
|D|d′

T
2 + d′

T
3)

while again retaining the original regret bound up to polylogarithmic factors. This gives
a near-linear-time algorithm in the case of a finite domain with smooth target functions,
since then |D| is a constant and d′

T is polylogarithmic in T .

However, the acquisition cost usually dominates that of conditioning. In the original
GP-UCB paper, Srinivas, Krause, S. M. Kakade et al. (2009) use a discretisation with
|D| = CT 2d to derive their results. In the case of the Matérn kernel RKHS, we can use a
much coarser discretisation:

22 Theorem. The worst case regret of running GP-UCB on Hkν with 0 < ν ≤ ∞ for
T ∈ N steps is increased by a factor no greater than CεT

ε for any ε > 0 when using a
discretisation consisting of a grid of at least CT

d(ν∨1)
d+2ν evenly spaced points.

In limit ν → ∞ this still recovers an exponential dependence on d. However, for any
fixed ν > 0 the required discretisation size is smaller than CT ν∨1.

Proof of theorem 22. Let zt ∈ D be the point selected by the discretised algorithm at
time-step t and a⋆ be a maximiser of f on D. Then we can bound the regret incurred as

RT,A =
T∑

t=1
f(x⋆)− f(zt) ≤

T∑
t=1
|f(x⋆)− f(a⋆)|+

T∑
t=1
|f(a⋆)− f(zt)|.

The second term is the regret incurred by running exact GP-UCB on D, which is
bounded by RT , the regret of running exact GP-UCB on X (maximal information gain
is non-decreasing with the size of the domain). We turn to bounding the first term.
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Take b ∈ arg minz∈D ∥x⋆ − z∥. Then, by definition of a⋆,

|f(x⋆)− f(a⋆)| ≤ |f(x⋆)− f(b)|.

Since f ∈ Hkν , it satisfies the Hölder condition

|f(x⋆)− f(b)| ≤ Cγ∥x⋆ − b∥γ

for γ = ν ∧ 1− ε and all 0 < ε < 1; and since the grid consists of evenly spaced points,

∥x⋆ − b∥ ≤ min{∥z − z′∥ : z, z′ ∈ D} .= ∆D.

and so |f(x⋆)− f(a⋆)| ≤ Cγ∆γ
D.

The overall discretised regret RT,D can therefore be bounded as RT,D ≤ RT + CγT∆γ
D.

We seek a maximal ∆D such that RT + CT∆γ
D ≤ C ′

εRTT
ε still holds. Using the lower

bound on regret in the Matérn RKHS, eq. (3.1) on page 56, it suffices that ∆D ≤ CT
ν∨1

d+2ν ,
which requires using at most Cd∆d

D uniformly spaced points.

It is important to note, however, that since we used the worst-case lower bounds from
Scarlett, Bogunovic et al. (2017b) and Scarlett (2018) in our derivation and these now
feature directly in the choice of discretisation for the algorithm, the algorithm is no
longer adaptive. A better approach, pursued in for example Salgia et al. (2020), is to
consider the discretisation scheme as a part of the algorithm, rather than applying a
discretisation separately. This may allow for a discretisation size scaling better than T d.

3.3 The SupKernelUCB algorithm

SupKernelUCB is a construction on-top of a GP-UCB-like algorithm that yields a near-
optimal bound on regret for the problem we consider (Valko, Korda et al., 2013). The
algorithm, described in fig. 3.2, splits the observed data into multiple subsets {Ψs

t},
constructed such that for any s, t, the observations in Ψs

t ⊂ Ht are independent of each
other, and uses regressors of the form GPR( · ,Ψs

t ) to construct upper confidence bounds.
The independence of observations in each subset allows for the use of concentration
inequalities for independent random variables (Azuma-Hoeffding), leading to much
stronger and easier to derive results. Specifically, the regret of SupKernelUCB after T
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steps is bounded as
RT ≤ ι

√
Td′

T ,

giving roughly a factor
√
d′

T improvement over GP-UCB. While the algorithm requires
the set of arms to be finite, it can be extended to convex domains using a discretisation.

Algorithm: SupKernelUCB
Parameters: δ ∈ (0, 1), T ∈ N
Initialisation: let S = log T and set Ψ1

1 = . . . = ΨS
1 = ∅

For each t = 1, . . . , T ,
1. Initialise A1 = {x1, . . . , xm}. Set s = 1.
2. Repeat the following until Xt is chosen:

(a) Compute (µ(s)
t , σ

(s)
t ) = GPR(R,Ψs

t) and evaluate

b
(s)
t (x) = β(δ)σ(s)

t (x) and u
(s)
t (x) = µ

(s)
t (x) + b

(s)
t (x)

for each x ∈ As where β(δ) =
√

2 log 2Tm/δ.
(b) If b(s)

t (x) > 2−s for any x ∈ As, then let it be Xt, observe Yt and store the
pair in Ψs, that is

Ψs
t+1 = Ψs

t ∪ {(Xt, Yt)}, Ψs′

t+1 = Ψs′

t for s′ ̸= s.

(c) Else if b(s)
t (x) ≤ 1/

√
T for all x ∈ As then choose Xt as the maximiser of

u
(s)
t and do not store the result. That is,

Ψs′

t+1 = Ψs′

t for all s′ = 1, . . . , S.

(d) Else, set

As+1 =
{
x ∈ As : u(s)

t (x) ≥ max
x′∈As

u
(s)
t (x′)− 2× 2−s

}
and s← s+ 1.

Figure 3.2: The SupKernelUCB algorithm.

The trick to constructing the independent subsets is that whether an observation (Xt, Yt)
is included in a set Ψs

t depends only on the the confidence width b(s)
t (Xt), and is therefore

independent of the observed value Yt. The construction is based on the the work of Auer
(2002), who introduces LinRel, a linear bandit algorithm, and extends it to SupLinRel.
There, the extension improves the regret bound by a factor of

√
d. While the construction

of independent sets of observations allows us to derive strong bounds for SupKernelUCB,
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the constant factors involved are large, and in practice SupKernelUCB suffers near-linear
empirical regret (demonstrated in table 5.1 on page 102). However, we will use a similar
subsetting trick to attain tighter confidence bounds in our work.

3.4 Hierarchical Optimistic Optimisation

The third method we consider is Hierarchical Optimistic Optimisation (HOO, Bubeck
et al., 2011). HOO is based on constructing an adaptive tree-like discretisation of the
domain, an idea with roots in the classical method of dividing rectangles (Jones et al.,
1993). Its analysis is closely related to that of Auer, Ortner et al. (2007) and Kleinberg
et al. (2008). Many works have since extended the HOO algorithm, including SOO
(Munos, 2011), StoSOO (Valko, Carpentier et al., 2013) and POO (Shang et al., 2019).

The assumptions made within HOO are very general. It assumes only that the target
function f is Lipschitz with respect to some dissimilarity (like a metric, but not requiring
the point-separating property) and that this dissimilarity is known a priori. When the
chosen dissimilarity is ∥x − y∥ν and the target function f is ν-Hölder continuous, the
results for HOO translate into a worst-case bound of the form

RT ≤ CεT
d+ν

d+2ν
+ε (∀ε > 0).

HOO is therefore near-minimax-optimal for the Matérn kernel RKHS when ν ≤ 1.
However, it is unclear whether there exists a dissimilarity for which HOO recovers
near-minimax-optimal regret for ν > 1.

We briefly describe the algorithm specialised to our setting. First, we specify a hierarchy
of dyadic covers of the domain, a set {Ai,h ⊂ [0, 1]d : i <∞, h = 1, . . . , 2i} such that

⋃
hAi,h = [0, 1]d (∀i ∈ N).

We take A0,0 = [0, 1]d, and for each level i > 0, we let Ai+1,2h and Ai+1,2h+1 be given by
splitting Ai,h in half along its longest direction (with some tie breaking rule). We call
Ai+1,2h and Ai+1,2h+1 the children nodes of Ai,h. At each step t = 1, . . . , T , the algorithm
begins at the root node A0,0 and recursively moves to the child with the higher upper
confidence bound Ui,h (which we define shortly). It stops when it reaches a node that it
has not previously visited, say AI,H . It then selects Xt as the centre of AI,H and uses
the observation Yt to update Ui,h for all (i, h) on the path from (0, 0) to (I,H).
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To construct the upper confidence bounds Ui,h, we first make a Lipschitz-type estimate

Li,h = µi,h +

√√√√2 log T
ni,h

+ ρi,h

for each (i, h), where µi,h is the average value of all observed values within Ai,h (including
within subsets of Ai,h), ni,h is the number of those observations and ρi,h is the diameter
of Ai,h with respect to the chosen dissimilarity metric. We then take Ui,h to be the
maximum of Li,h and the L-value of the children nodes of (i, h) and set the U -value of
any node that has not been previously visited to infinity. This leads the algorithm to, at
each iteration, traverse from the root of the tree to the node with the most promising
L-value, deviating if it comes across a child node that it has not previously visited.

As in SupKernelUCB, the strong theoretical guarantees of HOO arise from a clever use
of subsets of independent observations. In this case, we have that for any Ai,j,

1
ni,j

t∑
τ=1

(f(Xτ )− Yτ )1{Xτ ∈ Ai,j}

is a martingale difference sequence. This allows for the n−1/2
i,h ι rate of concentration seen

in the definition of the L-values.

Bubeck et al. (2011) show that the regret incurred by HOO is adaptive with respect
to a measure of problem difficulty called the near-optimality dimension of f , which
measures how quickly the pre-image of ε-suboptimal function values grows near the
optimum with respect to ε and the dissimilarity metric (this can be seen as generalising
the suboptimality gaps of finite-armed bandits). However, since the near-optimality
dimension depends on the dissimilarity metric, the algorithm does not adapt to the
smoothness of the function. In an interesting development, Locatelli et al. (2018) shows
that while it is possible to obtain rates for simple regret that are optimal with respect the
best possible dissimilarity metric (as done in Shang et al. (2019)), an a priori specification
of a dissimilarity metric is necessary to achieve optimal rates for regret. In particular,
this means that for ν ≤ 1, a priori knowledge of ν is required to attain optimal regret.
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3.5 Discussion

We have introduced three important algorithms, GP-UCB, SupKernelUCB and HOO,
and examined algorithm agnostic lower bounds for the problem. Looking at the results
for GP-UCB and SupKernelUCB, we see that the upper bounds for regret GP-UCB
cannot match the algorithm agnostic lower bounds. Specifically, comparing the lower
bounds with the upper bound from SupKernelUCB we see that for the Matérn-ν kernel,

γt ≥ T
d

d+2ν /ι.

In section 4.4, we show that γT ≤ ιT
d

d+2ν holds for a particular choice of ν and d.
Therefore, with the current analysis and form of upper confidence bounds, the best
possible bound on the regret of GP-UCB is

RT ≤ ιγT

√
T ≤ ιT

3d+2ν
2d+4ν .

This is vacuous for ν ≤ d/2. The same analysis implies that the regret bound for
SupKernelUCB cannot be improved by more than a polylogarithmic factor. Similarly,
recall that the regret of HOO is near-minimax-optimal for ν ≤ 1.

Moreover, GP-UCB is slow. Even with the sketching and batching techniques from
Calandriello, Carratino et al. (2019) and Calandriello, Carratino et al. (2020), and
combining the best-case bound for γt, and the discretisation from theorem 22, the
complexity bound for the resulting algorithm, CT , is of the form

CT ≤ ιT
d(ν∨1+3)+2ν

d+2ν .

This exceeds ιT 2 for all ν, d. In contrast, the runtime of HOO is on the order of T log T .

The theoretical results for GP-UCB are therefore weaker than those for SupKernelUCB
and HOO. Both the latter algorithms use upper bounds based on subsets of observations,
which are carefully constructed to allow for the use of the strong Azuma-Hoeffding
concentration inequality. Can we use a similar idea to construct a GP-UCB-style
algorithm that combines the strengths of all three algorithms? In the next chapter, we
develop the basis for a concentration inequality that will allow us to do exactly that.
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Chapter 4

Bounding information gain for
regression with the Matérn kernel

In this chapter, we bound the maximum information gain for a Matérn kernel as a
function of the lengthscale kernel parameter and the diameter of the domain. In effect,
we prove a quantitative version of the intuitive result that there is less to learn on a
smaller domain. Specifically:

• In section 4.1, we present a result based on the work of Widom (1963), bounding the
tail sum of eigenvalues of the Matérn kernel with respect to the kernel lengthscale
(the proof is presented in appendix section 4.A). By a change of variables argument,
we show that this implies a bound with respect to the diameter of the domain.

• In section 4.2, we use our result on eigenvalues to derive bounds for information
gain with explicit dependence on the kernel lengthscale and diameter of the do-
main. We use take two distinct approaches: using the discretisation methodology
of Srinivas, Krause, S. M. Kakade et al. (2009), which applies broadly; and following
the approach of Vakili et al. (2021), which requires an additional assumption of
uniformly bounded operator eigenfunctions.

• Then, in section 4.3, we show how our new bounds on information gain yield
a tighter regret bound for GP-UCB when using a carefully chosen lengthscale
parameter. This regret bound is sublinear for effectively all ν, d.

• Finally, in section 4.4, we discuss the assumption of uniformly bounded eigenfunc-
tions and establish for which combinations of ν and d it is known to hold.

67



4.1 Tail sums of Matérn kernel eigenvalues

The following result on tail sums of Matérn kernel eigenvalues will be key to our bounds
on the associated information gain:

23 Theorem. Let k be a Matérn-ν kernel on a d-dimensional interval of diameter ρ ≤ 1.
Write {λn} for the eigenvalues of the kernel integral operator associated with k with
respect to a uniform measure. Then, for any ε > 0 and n0 > Cερ

−ε,

∑
n>n0

λn ≤ C ′
ερ

2ν−εn
− 2ν

d
0 .

That a result of this kind ought to hold can be seen by examining the asymptotics
of the spectrum of the Matérn kernel operator for a measure with Lebesgue density V .
Specifically, let V : Rd 7→ R be a bounded, non-negative, Riemann-integrable function,
MV an operator corresponding to multiplication by V and T the kernel integral operator
associated with a Matérn kernel and the Lebesgue measure. Then Widom (1963) shows
that the operator eigenvalues of TMV satisfy

λn ∼ πν
(2
d

) d+2ν
d Γ (d/2 + ν)

Γ (−ν) Γ (d/2)
d+2ν

d

{∫
V (x)

d
d+2ν dx

} d+2ν
d

n− d+2ν
d .

Taking V to be the Lebesgue density of a uniform measure on [0, ρ]d (all results in this
chapter are translation invariant) and absorbing all terms that do not depend on ρ or n
into a constant, we have

λn ∼ Cρ2νn− d+2ν
d and so

∑
n>n0

λn ≤ C ′ρ2νn
− 2ν

d
0 + C ′′n

− 2ν
d

0 .

The leading term on the right hand side is the result we want. However, the additional
additive error term here does not have an explicit dependence on ρ. That it should depend
on ρ is clear: letting ρ→ 0, we expect the mass of the eigenvalues to concentrate on λ0

and, therefore, for a fixed n0 > 0, the tail sum to tend to 0. However, the proof technique
of Widom (1963) does not appear to yield a way of establishing this dependence.

Our approach to proving theorem 23 takes a different route. We use the methodology
of Widom (1963) to derive explicit upper bounds for the the tail sums of eigenvalues
of the Matérn kernel with respect to both n0 and the kernel lengthscale parameter ℓ,
while keeping V (and hence ρ) fixed. We prove this result, stated in the following lemma,
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in appendix 4.A.

24 Lemma. Let k be a Matérn-ν kernel on a d-dimensional unit interval with lengthscale
ℓ ≥ 1. Write {λn} for the eigenvalues of the kernel integral operator associated with k
and a uniform measure. Then, for any ε > 0 and n0 > Cεℓ

ε,

∑
n>n0

λn ≤ Aεℓ
−2ν+εn

− 2ν
d

0 .

Theorem 23 follows by noting that a Matérn kernel k(x, y) depends on the inputs x, y
and the lengthscale ℓ only through ∥x− y∥2/ℓ, and so the effect of scaling the domain
corresponds exactly to the inverse change in the lengthscale. A formal proof follows by
writing this as a change of variables:

Proof of theorem 23. Suppose (λ, ϑ) satisfy

λϑ(x′) =
∫

[0,1]d
k((x− x′)/ρ)ϑ(x)dx.

That is, (λ, ϑ) is an eigenpair of the integral operator associated with a Matérn kernel
with lengthscale ρ and a uniform measure on [0, 1]d. Define z = ρx, z′ = ρx′, then
dz/ρd = dx. Making this substitution,

λϑ(z′/ρ) =
∫

[0,ρ]d
k(z − z′)ϑ(z/ρ)dz/ρd.

Define ϑ′(x) = ϑ(x/ρ) and let pρ(z) = 1/ρd denote the density of a uniform measure on
[0, ρ]d with respect to the Lebesgue measure. Then,

λϑ′(z′) =
∫

[0,ρ]d
k(z − z′)ϑ′(z)pρ(z)dz,

and so (λ, ϑ′) is also an eigenpair for the operator with lengthscale 1 and a uniform
measure on [0, ρ]d. Thus the effect on the eigenvalues of changing lengthscale ρ 7→ 1 is
the same as that of changing the diameter of the domain 1 7→ ρ, and the claim then
follows from lemma 24 and noting the result is translation invariant.
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4.2 Bounds on information gain

We seek to bound the quantity log det(I+λ−1KXX) for all possible sampling locationsX =
{X1, . . . , Xt} ⊂ [0, 1]d. Using a continuity argument, M. W. Seeger et al. (2008) show that
for {(λn, ϑn)} the sequence of eigenvalues and eigenfunctions for the operator associated
with a kernel k and with a Gram matrix KXX , we have

log det(I + λ−1KXX) ≤
∑
n>0

log
(

1 + λ−1λn

t∑
i=1

ϑ2
n(Xi)

)
. (4.1)

From here, there are two standard ways of proceeding, both of which focus on eliminating
the term ∑t

i=1 ϑ
2
n(Xi). One follows from a discretisation argument (Srinivas, Krause,

S. M. Kakade et al., 2009), while the other uses an additional assumption of uniform
boundedness of the eigenfunctions (Vakili et al., 2021). We now integrate our results on
tail sums of eigenvalues with the two methods in turn.

4.2.1 Using a discretisation argument

The original bound by Srinivas, Krause, S. M. Kakade et al. (2009) was derived using
a discretisation argument. Adapted to our notation, it reads as follows.

25 Theorem. (Srinivas, Krause, S. Kakade et al., 2010, Theorem 8) Suppose that
A ⊂ Rd is compact and k is kernel continuously differentiable in a neighbourhood of A.
Write {λn} for the eigenvalues of k with respect to the uniform distribution over A. Pick
ζ > 0 and let Ft = (4ζ + 2)VAt

ζ log t, where VA is the volume of A. Then the information
gain on A after observing t points is bounded by

C max
r=1,...,t

[
n0 log rFt

λ
+ (4ζ + 2)VA log t

λ

(
1− r

t

)(
tζ+1 ∑

n>n0

λn + 1
) ]

+ C ′t1−ζ/d, (4.2)

for any n0 ∈ N ∩ [1, Ft].

The proof of the theorem is lengthy. Very briefly:

1. For points X1, . . . , Xt sampled from a uniform measure µ on the domain, applying
Jensen’s inequality and noting that Eϑ2

n(Xi) = 1 for all n by orthonormality of
eigenfunctions, and then using the linear bound log(1 + x) ≤ x for x ≥ 0,

E
∑

n>n0

log
(

1 + λ−1λn

t∑
i=1

ϑ2
n(Xi)

)
≤

∑
n>n0

log
(
1 + λ−1tλn

)
≤ λ−1t

∑
n>n0

λn. (4.3)
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This bound on the tail of the expected information gain was established in M. W.
Seeger et al. (2008), and eventually contributes to the second term in eq. (4.2);
the first term is related to a maximal bound on the head of this sum.

2. The bound now depends on the maximum of the tail sum of the eigenvalues
{λn} with respect to an operator with a uniform measure. This is bounded by
the maximum tail sum of eigenvalues on a regular discretisation of the domain,
making use of use Lipschitz continuity, which follows from the assumption that k
is continuously differentiable. This bound is responsible for the C ′t1−ζ/d additive
term at the end of eq. (4.2), where ζ > 0 controls how finely we discretise.

3. Finally, we compute a sequential greedy approximation of the maximum of the tail
sum on the discretisation and use the submodularity of information gain to bound
the true maximum in terms of the greedy approximation. This contributes at most
a constant factor, the C at the front of eq. (4.2).

Helpfully, because of the use of a discretisation argument, the result and its proof
carefully track dependencies of the bound on the volume of the domain. We can therefore
straightforwardly incorporate our new bounds:

26 Theorem. Pick t ∈ N and let A ⊂ Rd be an interval of diameter ρ satisfying
t−a ≤ ρ ≤ t−b for some 0 < b ≤ a < ∞. Then ζ > 0 chosen independently of t,
the information gain on A for a conjugate Gaussian process regressor equipped with a
Matérn-ν kernel with ν > 1 is bounded as

γA
t ≤ Cεt

ε
(
n0 + n

− 2ν
d

0 tζ+1−b(d+2ν) + t1−ζ/d
)

(∀ε > 0,∀n0 > C ′
εt

ε).

In particular, if b ≥ d+1
d+2ν

, choosing ζ = d we obtain γA
t ≤ C ′

εt
ε for all ε > 0.

Proof. First, take the maximum for both terms in eq. (4.2) individually, substitute
VA = ρd and bound all constants and logarithmic terms with Cεt

ε. With that, we have

γA
t ≤ Cεt

ε

(
n0 + ρdtζ+1 ∑

n>n0

λn + t1−ζ/d

)
.

Now use ∑n>n0 λn ≤ Aερ
2ν−εn

− 2ν
d

0 from theorem 23, then t−a ≤ ρ ≤ t−b and relabel
aε 7→ ε.

We have some remarks on the applicability of this result:
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1. The proof of theorem 25 requires Lipschitz continuity and therefore that ν > 1.
However, the proof could be relaxed to use Hölder continuity, and with that extended
to the case ν ≤ 1. While the exact form of the result would be different for ν ≤ 1—in
particular, ν would feature in the exponent of the additive discretisation term—
following through we would find that for all ν > 0 there exists a b <∞ such that
ρ ≤ t−b =⇒ γA

t ≤ Cεt
ε. This weaker statement suffices for the results on regret of

the hierarchical algorithm presented in chapter 5 (see theorem 42).

2. Theorem 25 is stated directly in terms of volumes rather than lengthscales. For that
reason, the proof of bounds on information gain with respect to domain diameter,
presented in theorem 26, is very straightforward. On the other hand, a formal
proof that an equivalent result holds for lengthscale would require replicating much
of the original proof of theorem 25. Due to this, we forgo presenting a formal proof;
it is the result on diameter and not lengthscale that will form part of our core
contributions in chapter 5.

3. Theorem 25 as stated in Srinivas, Krause, S. Kakade et al. (2010) assumes strong
conditions on the sample paths of the Gaussian process associated with the kernel
k. These are not necessary for the proof of the theorem itself and are there only
for the benefit of a later application of the result to Bayesian optimisation.

4.2.2 Using assumption of uniformly bounded eigenfunctions

A recent result by Vakili et al. (2021) provides a cleaner, stronger information gain bound
for kernels with uniformly bounded eigenfunctions.

27 Theorem (Vakili et al. (2021), Theorem 3). Let k be a continuous kernel on X with
uniformly bounded eigenfunctions and λ1 ≥ λ2 ≥ . . . the associated operator eigenvalues
with respect to a finite Borel measure. Then there exists a constant C > 0 such that for
all n0, t ∈ N and n0 < t,

γt ≤ C

(
n0 log t+ t

∑
n>n0

λn

)
.

Comparing the bound in theorem 27 with eq. (4.3) on page 70, the result implies that
for kernels satisfying the uniform boundedness assumption, maximal information gain is
of the same order as the expected information gain for uniform covariates.

We present a simple proof of theorem 27. The full proof in Vakili et al. (2021) derives a
better dependence on some of the constants than that sketched here.
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Proof. Using eq. (4.1) on page 70 and a linear bound log(1 + x) ≤ x for x ≥ 0 for the
tail eigenvalues, we have

γt ≤
1
2
∑

n≤n0

log
(

1 + λ−1λn

t∑
i=1

ϑ2
n(Xi)

)
+ 1

2λ
−1 ∑

n>n0

λn

t∑
i=1

ϑ2
n(Xi).

By assumption, there exists an A1 > 0 such that ϑ2
n(x) ≤ A for all n and all x ∈ X .

Moreover, since the integral operator associated with k is trace class,

λn ≤
∑
n>0

λn =
∫

X
k(x, x)dx ≤ sup

x∈X
k(x, x) ≤ A2

for some A2 > 0 dependent on k. And so,

γt ≤
n0

2 log(1 + λ−1tA1A2) + 1
2λ

−1tA1
∑

n>n0

λn,

as claimed.

Vakili et al. claim that this closes the gap between the lower and upper bounds on
information gain for the Matérn kernel, proposing a bound of

γt ≤ Ct
d

d+2ν log
2ν

2ν+d t

for all d ≥ 1 and ν > 1/2. We question this specific application of the result in section 4.4,
but for now proceed to combine it with our new bounds on the eigenvalues. To combine
theorem 27 with changing lengthscale or the diameter of the domain, we will need a
stronger form of the uniform boundedness assumption:

28 Definition. Let k be a kernel. We say the eigenfunctions of k are uniformly bounded
independently of scale if there exists an Ak > 0 such that for all a ∈ (0, 1] the operator
eigenfunctions of the kernel k(ax, ay) are uniformly bounded by Ak.

By examining the change of variables used in the proof of theorem 23, it is immediate
that definition 28 is sufficient both in cases of changing lengthscale and diameter. Indeed,
we could even relax the assumption to allow for a polylogarithmic dependence of Ak on a.
Either way:

29 Theorem. Let k be a Matérn-ν kernel on A ⊂ Rd, an interval of diameter ρ. Assume
that the eigenvalues of k are uniformly bounded independently of scale (definition 28).

73



Then for all t ∈ N and ρ ≤ t−b the information gain on A for a conjugate Gaussian
process regressor with kernel k is bounded as

γA
t ≤ Cεt

ε
(
n0 + t1−2νbn

− 2ν
d

0

)
(∀ε > 0, ∀n0 > C ′

εt
ε).

In particular, for b ≥ 1
2ν

, γA
t ≤ C ′

εt
ε for all ε > 0.

This result and an equivalent for the lengthscale dependence are immediate. It remains
to check that the additional assumption (definition 28) holds for particular values of ν
and d. We look at this in section 4.4, following a brief diversion.

4.3 Improved regret bounds for GP-UCB

Our bound on information gain with respect to kernel lengthscale can be used to improve
the results on the regret of GP-UCB, when using a lengthscale chosen as a function of
the horizon. Recall that the regret incurred by GP-UCB can be written in the form

RT ≤ C
√
TγT (∥f∥kν +√γT ),

where we include a direct dependence on the RKHS norm ∥f∥kν rather than on its
upper bound R. From theorems 26 and 29 the information gain term can be reduced by
increasing lengthscale. On the other hand, this increases ∥f∥kν :

30 Lemma. Let k1
ν and kℓ

ν be Matérn-ν kernels with lengthscales 1 and ℓ respectively.
Then for any f ∈ Hk1

ν
([0, 1]d), ∥f∥kℓ

ν
≤ ℓν∥f∥k1

ν
.

Proof. Denote by S1 and Sℓ the respective spectral densities. We have,

Sℓ(ω) = Cℓd(C ′ + ℓ2|ω|2)−2ν−d ≥ Cℓ−2ν(C ′ + |ω|2)−2ν−d = ℓ−2νS1(ω),

and therefore we can bound the change in norm as

∥f∥2
kℓ

ν
=
∫ (FEf)2(ω)

Sℓ(ω) dω ≤ ℓ2ν
∫ (FEf)2(ω)

S1(ω) dω = ℓ2ν∥f∥2
k1

ν
,

where E : [0, 1]d 7→ Rd is a suitable extension operator, per theorem 5 on page 39.

By selecting ℓ as a function of T such that ∥f∥kℓ
ν

and √γT are asymptotically equivalent
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up to constant factors, we obtain the following stronger bound.1

31 Theorem. Under the usual assumptions, GP-UCB with a Matérn-ν kernel, ν > 1,
and

ℓ = T b for b = d(d+ 1)
d2(2ν + 1) + 4ν(d+ ν)

has regret bounded as

RT ≤ CεT
y+ε with y = d2(6 + 1/ν) + 8d+ 4ν

d2(4 + 2/ν) + 8d+ 8ν

for all ε > 0.

This bound is sublinear for all ν when d = 1 and for all ν > 1/4d2 + d
√
d2 − 4 for d ≥ 2.

This is an improvement over the previous results, which required ν > d2/2 for all d ≥ 1
(Srinivas, Krause, S. M. Kakade et al., 2009; Chowdhury et al., 2017).

Using the additional assumption of uniformly bounded eigenfunctions, we obtain the
following result. Proofs of this and the previous result are included in appendix 4.B.

32 Theorem. For any ν > 0 such that kν has eigenfunctions that are uniformly bounded
independently of scale (definition 28), setting ℓ = T b for b = d

4ν(d+ν) , the regret incurred
by GP-UCB can be bounded as

RT ≤ CεT
2d+ν

2d+2ν
+ε (∀ε > 0).

This result gives sublinear regret for all ν, d for which the stronger uniform boundedness
condition holds. It is not, however, near-minimax-optimal.

4.4 On uniformly bounded eigenfunctions

The uniform boundedness assumption made in Vakili et al. (2021) is very strong. D.-X.
Zhou (2002) constructs an example showing that neither compact support nor smooth-
ness conditions allow us to infer uniform boundedness of eigenfunctions (see also the
discussion in section 3 of Minh et al. (2006)). Here, we outline a general derivation of
the eigenfunctions for the Matérn kernel and discuss the assumption.

1Strictly speaking, theorem 31 requires proving that the expected relationship between lengthscale
and information gain holds under the proof technique of Srinivas, Krause, S. M. Kakade et al. (2009).
That it does is clear. However, due to the length of the original proof, we have not shown this formally.
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The eigenfunctions associated with a kernel are the eigenfunctions of the Fredholm
homogenous equation of the second kind, given in the context of the relevant literature
on integral equations in the form

ϑ(x) = λ′
∫

[0,1]d
k(x, y)ϑ(x)dy.

It is one of the most well studied integral equations. In the case where the kernel k is
stationary and its spectral density can be written as a ratio of two rational polynomials,
that is S(ω) = N(ω)

D(ω) for polynomials N,D, the general solution is given by

D(∇2)ϑ(x) = λ′N(∇2)ϑ(x),

where ∇2 denotes the Laplace operator and its exponentiation corresponds to repeated
application of the operator (Le Maître et al., 2010, chapter 2). In particular, for a
Matérn-ν kernel in d-dimensions, the eigenfunctions ϑ satisfy

(∇2ν+dϑ)(x) = λ′ϑ(x). (4.4)

From this, it is clear that the eigenfunctions are of the form

ϑ(x) =
∑
r≤R

Are
−Brx cos(Crx+Dr), (4.5)

where R depends on ν, d and the constants Ar, Br, Cr, Dr > 0; these constants need to
be solved for using boundary conditions.

Vakili et al. (2021) cites Riutort-Mayol et al. (2020) for uniform boundedness of the
Matérn kernel eigenfunctions. There, the authors solve eq. (4.4) under the homogenous
Dirichlet boundary conditions,

ϑ(x) = 0 for all x ∈ ∂[0, 1]d. (4.6)

These lead to harmonic sinusoidal eigenfunctions. However, any RKHS with a basis of
functions that satisfy eq. (4.6) contains only functions f that satisfy f(x) = 0 for all
x ∈ ∂[0, 1]d, and therefore only a strict subset of the Matérn kernel RKHS. While using
the solution with homogenous Dirichlet boundary conditions to approximate stationary
kernels has been studied formally in Solin et al. (2020), it is not shown or implied that
the uniform boundedness of eigenfunctions under this approximation implies the uniform
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boundedness of eigenfunctions for the true kernel. If it were so, it would immediately imply
that all stationary kernels with compact support have uniformly bounded eigenfunctions.

From theorem 12 on page 42, it is apparent that the correct definition of a Matérn
kernel on [0, 1]d is given by the restriction of the kernel defined on Rd. The boundary
conditions to recover the restricted kernel then need to capture that each function f in
the RKHS of the kernel on [0, 1]d is the restriction of a suitable function on Rd. This,
in effect, introduces a discontinuity at the boundary ∂[0, 1]d. A method for solving for
the eigenfunctions under such boundary conditions is considered for the case d = 1 in
Youla (1957). There, the author extends the ratio of polynomials defining the spectrum
of the kernel to the complex plane and treats the boundary as a removable singularity
(the Weiner-Hopf method). The solution for the coefficients defining the eigenfunctions
(those in eq. (4.5)) are then given as the solution to a set of transcendental equations,
which grow in complexity with the degree of the polynomials N,D. For the simplest
case where the degree of N is 0 and D is 1, which corresponds to the Matérn-1/2 kernel,
Youla (1957) finds that the eigenfunctions take the form

ϑ(x) = A1 cos(C1x+D1). (4.7)

Given the orthonormalisation constraint in the definition of eigenfunctions, these are
therefore clearly uniformly bounded independently of scale (and thus also uniformly
bounded). For higher values of ν, the solution becomes significantly more complicated
and the properties of the eigenfunctions more difficult to infer. Moreover, extending the
Weiner-Hopf method to d > 1 is very unpleasant. However, since for all values of ν and
d, the constants Ar, Br, Cr, Dr are given by the solution of a transcendental equation,
they do not correspond to harmonic frequencies on [0, 1]d and thus differ from the result
obtained under the Dirichlet boundary conditions.

It may be tempting to extend the result for the one-dimensional Matérn-1/2 kernel case
to d > 1 by taking a d-product of one dimensional Matérn-1/2 kernels. This is sometimes
taken as the definition of the d-dimensional Matérn kernel in the literature, for example
in Mutný et al. (2019) and Riutort-Mayol et al. (2020). The two definitions are not,
however, equivalent. Using the simplified spectral density Fkν,d = (1 + ∥ω∥2

2)−ν−d/2 for
the Matérn-ν kernel and considering points on the line ω1 = . . . = ωd, for all d > 1,

F
d∏

i=1
kν,1 =

d∏
i=1
Fkν,1 =

(
1 + d∥ω∥2

)−dν−d/2
< Cd

(
1 + ∥ω∥2

)−ν−d/2
= CdFkν,d.
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We see therefore that the d-product kernel has a much faster rate of decay, and so
higher smoothness of functions in the corresponding RKHS, than the correctly defined
d-dimensional Matérn kernel. A formal analysis of the d-product kernel is given in Ritter
et al. (1995).
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Appendix 4.A Proof of results on the tail sums of
Matérn kernel eigenvalues

This appendix develops the results necessary to prove lemma 24 on page 69, with the
proof itself contained within section 4.A.6. The intermediate results are based heavily on
the structure and proof techniques of Widom (1963), with our labour being in establishing
explicit, quantitative bounds in place of results on asymptotic equivalences.

4.A.1 A symmetrised integral operator

Widom’s results are for a symmetrised version of the integral operator: that of the form
MV 1/2TMV 1/2 . Before proceeding, we establish that, for the case where V corresponds to
the Lebesgue density of a measure with support equal to the domain of the kernel, the
eigenvalues of the symmetrised operator are equal to those of TMV . Henceforth we work
with exclusively with the symmetrised operator.

33 Lemma. For X a compact set, let k : X × X 7→ R be a kernel and T : L2(X ) 7→
L2(X ) the associated integral operator with respect to the Lebesgue measure on X . Let
V : X 7→ R be a bounded positive function and denote by MV the operator corresponding
to a multiplication by V . Then both MV 1/2TMV 1/2 and TMV are maps L2(X ) 7→ L2(X )
and these have the same eigenvalues.

In the proof of the lemma, we make use the multiplicative inverse operator MV −1/2 . While
this is not a bounded operator, it only ever appears in conjunction with its inverse MV 1/2 .

Proof. The integrability results follow trivially from the boundedness of V . For the result
on eigenvalues, we prove the two inclusions in turn:

1. Suppose (ϑ, λ) satisfy MV 1/2TMV 1/2ϑ = λϑ and take ϑ′ such that MV 1/2ϑ′ = ϑ.
Then

MV 1/2TMV ϑ
′ = MV 1/2λϑ′.

Left-applying MV −1/2 on both sides we see that λ is an eigenvalue of TMV .

2. Suppose (ϑ, λ) satisfy TMV ϑ = λϑ. Let ϑ′ = MV 1/2ϑ. Then

TMV 1/2ϑ′ = λMV −1/2MV 1/2ϑ′

Left-applying MV 1/2 on both sides, we have that λ is an eigenvalue of MV 1/2TMV 1/2 .
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Therefore the eigenvalues of MV 1/2TMV 1/2 and TMV are equal.

4.A.2 Notation and assumptions (I)–(III)

We will write kp for a periodic kernel on Id = [−π, π]d, Tp for the associated integral
operator and {cn : n ∈ Nd} for the multiset of the corresponding Fourier coefficients. We
refer to n ∈ Nd as lattice points. For N ⊂ Nd, we write |N | for the cardinality of N ; for
A ⊂ Rd, |A| denotes its Lebesgue measure. For ε > 0, we write {cn > ε} as shorthand
for {n : cn > ε} and denote by Ψc(ε) = |{n : cn > ε}|.

Where specified, the coefficients {cn} satisfy:

(I) cn ≥ 0 for all n ∈ Zd,

(II) limα→∞ cαn = 0 for n ̸= 0, and

(III) there exists an R such that for all n with ∥n∥ > R,

∥n′∥ > ∥n∥+ 1 =⇒ cn′ < cn.

We will refer to these assumptions by their corresponding Roman numerals.

For a trace class operator T , we write N+(ε, T ) andN−(ε, T ) for the number of eigenvalues
of T which are greater than ε and smaller than −ε respectively. For Ω ⊂ Rd, we write
PΩ for the operator corresponding to multiplication by the characteristic function of Ω.

4.A.3 A lemma by Widom, modified

Our bounds for tail eigenvalues of the Matérn kernel will require a modified version of
the Main Lemma from Widom (1963). For a periodic kernel, the lemma relates the
eigenvalues of its integral operator restricted to a subset of the domain to the Fourier
coefficients of the kernel. With the established notation:

34 Lemma (Widom (1963), Main Lemma, modified). Let Ω1 and Ω2 be non-overlapping
intervals contained in Id. Then if {cn} satisfies (I)–(III) we have that for a constant
A > 0 and all ε < max{cn0 : ∥n0∥ > R + 3},

N±(ε, PΩ1TpPΩ2 + PΩ2TpPΩ1) ≤ ARΨc(ε).

Lemma 34 differs from Widom’s Main Lemma in that it provides an upper bound with an
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explicit dependence on R; Widom’s result was purely asymptotic in nature and assumed
R to be a constant. This will be key for our application.

Our modification can be isolated to a single intermediate result, lemma 35. We now
state and prove the modified intermediate result and then sketch how to propagate the
change through the proof of Main Lemma. For the rest of this subsection, assume any
coefficients {cn} satisfy (I)-(III).

35 Lemma (Widom (1963), Lemma 2, modified). For R sufficiently large, there exists
a constant A2 > 0 such that the set {n : cn > ε} is contained within a ball of volume
A2R

dΨc(ε) for all ε > 0.

The change from Lemma 2 as stated by Widom is the introduction of an explicit
dependence on the radius R from (III), which was previously assumed to be constant.

Proof. Let
r0 = max {r : ∃n with ∥n∥ = r and cn > ε}

and associate with r0 a point n0 satisfying ∥n0∥ = r0.

We consider two cases:

1. Case r0 > R + 1. Suppose that there exists a point b such that

∥b∥+ 1 < r0 and cb < ε.

By assumption III, r0 > ∥b∥ + 1 =⇒ cn0 < cb and therefore cn0 < ε. But by
definition of r0 and n0, cn0 > ε. Hence no point satisfying the definition of b exists.
And so we have that for all b ∈ Zd with ∥b∥+ 1 < r0, cb > ε. Now take

r1 = max {r : ∃b with ∥b∥ = r and r + 1 < r0} .

Since for any x > 0 there exists an n ∈ Zd with ∥n∥ ∈ [x, x + 1), we have that
r1 ≥ r0 − 2. From the definition of r0, {n : cn > ε} ⊂ B(r0). Since r1 ≥ 1, we
have r1 ≥ r0/3, and so |B(r0)| ≤ C|B(r1)|. Also, from the definition of r1, for any
n ∈ B(r1), cn > ε, and so

B(r1) ∩ Zd ⊂ {n : cn > ε} ,

leading to |B(r0)| ≤ C|B(r1)| ≤ C1|{n : cn > ε}|.
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2. Case r0 ≤ R + 1. Then r1 ≤ r0 ≤ R + 1, and so |B(r1)| ≤ C2R
d.

Defining A2 = (C1 ∨ 1)C2 we obtain the result.

We will also need the following lemma used in the proof of the original statement.

36 Lemma (Widom (1963), Lemma 1). Assume that {n : cn ̸= 0} ⊂ B(r) with r > 2
Then ∫

Id

∥x∥
∣∣∣∑ncne

i⟨n,x⟩
∣∣∣2 dx ≤ A1r

d−1 log rmax
n

c2
n,

where A1 depends on d only.

With that, we now sketch the proof of the modified main lemma.

Sketch proof of lemma 34. Widom’s approach to proving the main lemma is to decompose
Tp into a sum T1 + T2 + T3, with each operator in turn given by the following Fourier
coefficients:

cn,1 =

cn if cn ≤ ε

ε otherwise
, (4.8)

cn,2 =

cn − δ if cn > δ ≤ ε

0 otherwise
, (4.9)

cn,3 =


cn − ε if ε < cn ≤ δ

δ − ε if cn > δ

0 if cn ≤ ε

, (4.10)

for δ, ε > 0 with δ < ε. T1 has norm bounded by ε, and T2 has rank at most Ψc(δ),
making these simple to bound. The crux of the argument is then bounding T3.

Widom shows that the number of eigenvalues of PΩ1T3PΩ2 +PΩ2T3PΩ1 that exceed ε > 0,
which we denote N+

3 (ε), can be bounded as

ε2N+
3 (ε) ≤ A

∫
Id

∥x∥
∣∣∣∑ncn,3e

i⟨n,x⟩
∣∣∣2 dx.

Now by lemma 36, we can bound this integral by A1r
d−1 log rmaxn c

2
n, where r > 2 is to

be chosen such that {cn,3 ̸= 0} ⊂ B(r). Since {cn,3 ̸= 0} = {cn > ε}, lemma 35 shows
that we can choose r to be the radius of a sphere of volume A2R

dΨc(ε), whenever that
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quantity is greater than 2. From (III), this is guaranteed to hold for all ε < cn0 with n0

satisfying ∥n0∥ > R+ 3. Widom completes his proof by showing that the N+
3 (ε) term

dominates the other two in terms of dependence on ε. A tedious but trivial modification
of that argument confirms the same holds for the dependence on R.

4.A.4 Bounding tail sums of eigenvalues for a restriction of a peri-
odic kernel

We now use the modified main lemma to bound the tail sum of the eigenvalues for the
restriction of a periodic kernel kp, in terms of the tail sum of the Fourier coefficients of kp.
To see how and why this will work, consider that we can write any stationary kernel on
a compact domain as the restriction of a periodic kernel on a larger domain, and that
the eigenvalues of a periodic kernel are precisely its Fourier coefficients. This establishes
the required link.

We begin with a technical lemma.

37 Lemma. Let A > 0 be a constant and {hi > 0} a non-increasing sequence satisfying
|{hi > ε}| ≤ AΨc(ε) for all ε < max{cn0 : ∥n0∥ > R + 3} and

m(x) = min{cn : ⌈x⌉ ≤ ∥n∥ < ⌈x⌉+ 1}.

Then, for all i0 > R, ∑
i>i0

hi ≤ Cd(A+ 1)
∑
i>i0

m
(
i1/d

)
.

Proof. Some definitions:

• Let g = {gj} be a nonincreasing sequence and denote Ψg(ε) = |{gj > ε}|.

• For a fixed j0 ∈ N, let A be the set of sequences such that for all a ∈ A, |{ai >

ε}| ≤ AΨg(ε) for all ε < gj0 .

We begin by constructing a sequence β that is an elementwise upper bound on sequences
in A. Let Mj = ⌊AΨg(gj+1)⌋ − ⌊AΨg(gj)⌋ and take

β = {g0, . . . , g0︸ ︷︷ ︸
M0 terms

, g1, . . . , g1︸ ︷︷ ︸
M1 terms

, . . . , gj, . . . , gj︸ ︷︷ ︸
Mj terms

, . . . }.

Then β has the following properties:
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1. For all β′ ∈ A and all i ∈ N, βi ≥ β′
i. Suppose otherwise: then there exists a β′ ∈ A

and i′ ∈ N such that β′
i′ > βi′ . Let j′ = max{j : βi′ = gj}. Then

|{β′
i > gj′}| ≥ |{βi > gj′}|+ 1 = ⌊AΨg(gj′)⌋+ 1 ≥ AΨg(gj′),

and therefore β′ ̸∈ A.

2. For all intervals of the form [gj, gj′),

|β ∩ [gj, gj′)| ≤ (A+ 1)|{gi} ∩ [gj, gj′)|.

This follows from bounding

|β ∩ [gj, gj′)| ≤ ⌊AΨg(gj)⌋ − ⌊AΨg(gj′)⌋ ≤ A(Ψg(gj)−Ψg(gj′)) + 1,

and using 1 ≤ Ψg(gj)−Ψg(gj′) = |{gi} ∩ [gj, gj′)| for any non-empty interval.

With that construction in place, we identify {gj} with a nonincreasing ordering of
{cn : n ∈ Nd}. Thus Ψg = Ψc, and so by property 1 of β, ∑i>i0 hi ≤

∑
i>i0 βi for all

i0 ≥ j0 where j0 is such that gj0 = cn0 . We now proceed to upper bound ∑i>i0 βi.

Let a(j) = min{cn : j ≤ ∥n∥ < j + 1} and b(j) = max{cn : j ≤ ∥n∥ < j + 1} and define
Dj = [a(j + 1), a(j)). We bound the tail sum of β using {Dj} as a partition of its values:

∑
i>i0

βi ≤
∑
j>j′

0

|β ∩Dj|max{βi : βi ∈ β ∩Dj} ≤
∑
j>j′

0

|β ∩Dj| a(j)

for j′
0 such that βi0+1 ∈ Dj′

0+1, that is j′
0 = min{j : βi0+1 ≤ a(j + 2)}. Now observe

that the intervals Dj are of the form considered in property 2 of β. Therefore, by 2,
|β ∩Dj| ≤ (A+ 1)|{cn} ∩Dj| for all j sufficiently large. This with the previously derived
inequalities yield

∑
i>i0

hi ≤
∑
i>i0

βi ≤
∑
j>j′

0

|β ∩Dj| a(j) ≤ (A+ 1)
∑
j>j′

0

|{cn} ∩Dj| a(j),

and so our bound now depends on {cn} only.

We now bound |{cn} ∩ Aj|. Consider the two constraints in turn:

1. Since cn ≥ a(j + 1), applying (III) twice, we have that b(j + 2) < a(j) < cn, and
therefore ∥n∥ < j + 3.
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2. Also, cn < a(j). By (III), a(j) < a(j − 2), and therefore ∥n∥ > j − 2.

Hence cn ∩ Aj ⊂ B(j + 3) \ B(max {j − 2, 0}), a fixed width annulus, and so

|cn ∩ Aj| ≤ Cd |B(j + 3) \ B(max {j − 2, 0})| ≤ C ′
dj

d−1.

Here, the counting measure on the left hand side is bounded by the Lebesgue measure of
the annulus containing that set on the right hand side. This gives,

∑
j>j′

0

|{cn} ∩ Aj| a(j) ≤ C ′′
d

∑
j>j′

0

jd−1a(j).

for some C ′′
d > 0.

The stated result follows by a change of variables. Observe that the number of d-roots
between any two consecutive integers j and j + 1 grows as jd−1. So for any constant
C > 0 and some Cd > 0, the sequence {⌈n1/d/C⌉ : n ∈ N} takes on each integral value
j ∈ N at least CCdj

d−1 times. Therefore,

∑
i>i0

hi ≤ Cd(A+ 1)
∑
j>j′

0

jd−1a(j) ≤ CC ′
d(A+ 1)

∑
n>n0

a(⌈n1/d⌉)

with n0 = min{n : βi0+1 ≤ a(⌈n1/d/C⌉ + 2)}. Now observe that i0 counts the number
of points excluded from the sum on the left, whereas n0 is, up to constant factors, the
volume of a ball in Nd that we exclude from the sum on the right. Together with (III),
this shows that n0 needs to scale as Cdi0 for some Cd > 0. We absorb Cd into the constant
in the definition of n0. Noting a(⌈·⌉) = m(·), we obtain the stated result.

The following lemma is the main result of this subsection.

38 Lemma. Let Ω be the interval |xi| ≤ π/3. Let {cn} be the Fourier coefficients of a
periodic operator Tp and let

m(x) = min{cn : ⌈x⌉ ≤ ∥n∥ < ⌈x⌉+ 1}.

Denote by {λn} the eigenvalues of PΩTpPΩ. Then for all n0 with ∥n0∥ > R,

∑
n>n0

λn ≤ C(R + 1)
∑

n>n0

m(C ′n1/d).
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To prove lemma 38 we need the following standard result.

39 Min-max theorem (Widom (1963)). Let Ai (i = 1, . . . , i0) be self-adjoint and
completely continuous. Then if ε = ∑

εi we have N±(ε,∑Ai) ≤
∑
N±(εi, Ai).

Proof of lemma 38. Let Ω1,Ω2, . . . ,Ω3d be non-overlapping translates of Ω that cover Id.
Then we can decompose Tp as Tp = ∑

j,k PΩj
TpPΩk

where PΩj
is the projection operator

corresponding to multiplying by the characteristic function of the set Ωj. Then, by the
min-max theorem, for any 0 < δ < 1,

N+((1− δ)ε, Tp) ≥ N+(ε,
∑

j

PΩj
TpPΩj

)−N+(δε,−
∑
j ̸=k

PΩj
TpPΩk

) (4.11)

= N+(ε,
∑

j

PΩj
TpPΩj

)−N−(δε,
∑
j ̸=k

PΩj
TpPΩk

). (4.12)

Since Tp is periodic, we have N+((1− δ)ε, Tp) = Ψc((1− δ)ε). And since ∑j PΩj
TpPΩj

is
a direct sum,

N+(ε,
∑

j

PΩj
TpPΩj

) = 3dN+(ε, PΩTpPΩ).

Applying the min-max theorem, we also have

N−(δε,
∑
j ̸=k

PΩj
TpPΩk

) ≤
∑
j<k

N−(δε/32d, PΩj
TpPΩk

+ PΩk
TpPΩj

).

By lemma 35, each term in the above sum is bounded by ARΨc(δε/32d) whenever
δε/32d < cR. Therefore,

N+(ε, PΩTpPΩ) ≤ 3−dΨc((1− δ)ε) + 3dCRΨc(δε/32d),

for ε sufficiently small. Since Ψc is monotonically decreasing,

|{λn > ε}| ≤ CdR|{cn > Cδ,dε}| (∀ε < cR),

and the result follows by applying lemma 37.

4.A.5 Relating Fourier coefficients to spectral density

Next, in lemma 40, we relate the spectral density of a stationary kernel k with the Fourier
coefficients {c′

n} of a periodic kernel kp equal to k on a subset of its domain.
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40 Lemma. Let S be the Fourier transform of a stationary kernel k with an integral
operator T , and let kp be a periodic kernel on Id such that MV TpMV = MV TMV . Let
{c′

n} be the Fourier coefficients of kp. Then for all n, ε, α > 0,

S(n)− Cε,αS(0) ∥n∥−α < c′
n ≤ (1 + ε)S(n) + Cε,αS(0) ∥n∥−α .

Proof of lemma 40. Let u(x) be an infinitely differentiable function on Rd satisfying
u(x) = 1 for |xi| ≤ π/2 and u(x) = 0 where |xi| > π for any i, and let U be its Fourier
transform. Then MV TMV is the integral operator on L2(Id) with the kernel

V (x)k(x− y)V (y) = V (x)k(x− y)u(x− y)V (y)

since u(x− y) = 1 whenever V (x)V (y) ̸= 0. Importantly, this is also equal to

V (x)kp(x− y)V (y)

where kp(x) is a function of period 2π equal to k(x)u(x) for |xi| ≤ π. Therefore kp is the
kernel of the operator T on L2(Id) associated with the sequence {c′

n} given by

c′
n =

∫
Id

kp(x)e−in·xdx =
∫

Ed

u(x)k(x)e−in·xdx.

Noting the relationship between multiplication and convolution for Fourier transforms,
we have

c′
n = (2π)−d

∫
U(ω)S(n− ω)dω = S(n) + (2π)−d

∫
U(ω) (S(n− ω)− S(n)) dω,

since (2π)−d
∫
U(ω)dω = u(0) = 1. Then for any δ > 0,

c′
n = S(n) + (2π)−d

∫
∥ω∥≤δ∥n∥

U(ω) (S(n− ω)− S(n)) dω

+ (2π)−d
∫

∥ω∥>δ∥n∥
U(ω) (S(n− ω)− S(n)) dω.

Looking at the first integral, we have
∫

∥ω∥≤δ∥n∥
U(ω) (S(n− ω)− S(n)) dω ≤ sup

∥ω∥≤δ∥n∥
|S(n− ω)− S(n)|.
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Since S is continuous, for all ε > 0 there exists a δ > 0 such that

0 < sup
∥ω∥≤δ∥n∥

|S(n− ω)− S(n)| ≤ εS(n).

Now consider the second integral. Since S decreases away from 0 and is positive, and u

is smooth,

−Cε,αS(0) ∥n∥−α < (2π)−d
∫

∥ω∥>δ∥n∥
U(ω) (S(n− ω)− S(n)) dω ≤ Cε,αS(0) ∥n∥−α

for all α > 0. Using bounds from section 4.A.5 in the expression for c′
n gives

S(n)− Cε,αS(0) ∥n∥−α < c′
n ≤ (1 + ε)S(n) + Cε,αS(0) ∥n∥−α (∀ε, α > 0).

Next, we confirm that the derived bounds on {c′
n} imply that when k is a Matérn

family kernel, its Fourier coefficients satisfy (III), and determine the dependence of
the corresponding radius R on the kernel lengthscale; that they satisfy (I) and (II) is
immediate. For this result, we will use a simplified form for the spectral density of a
Matérn-ν kernel, writing Sℓ(ω) = ℓd(1 + ℓ2|ω|2)−p where p = ν + d/2. The omitted
constant factors affect the result by a constant factor and will be accounted for later.

41 Lemma. Let Sℓ be the simplified spectral density of a Matérn kernel with lengthscale ℓ
and let {c′

n} be a sequence satisfying

Sℓ(n)− Cε,αS
ℓ(0) ∥n∥−α < c′

n ≤ (1 + ε)Sℓ(n) + Cε,αS
ℓ(0) ∥n∥−α (∀n, α > 0). (4.13)

Then for all ε > 0 and ∥n∥ > (1 + ε)ℓε, we have c′
n > c′

n+1.

The lemma shows that such {c′
n} satisfies (III) with R = Cεℓ

ε for all ε > 0 and ℓ > 1.

Proof. From eq. (4.13), a sufficient condition for c′
n > c′

n+1 is that

Sℓ(n)− Cε,αS
ℓ(0)n−α > (1 + ε)Sℓ(∥n∥+ 1) + Cε,αS

ℓ(0)(∥n∥+ 1)−α

Substituting in the expression for Sℓ, dividing through by ℓd that is

(1 + ℓ2 ∥n∥2)−p − (1 + ε)(1 + ℓ2(∥n∥+ 1)2)−p > Cε,α(∥n∥−α + (∥n∥+ 1)−α).

Since ∥n∥−α > (∥n∥+ 1)−α, it suffices that the left hand side is greater than Cε,α ∥n∥−α.
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Multiplying through, it suffices that n satisfies

(1 + ℓ2(∥n∥+ 1)2)p − (1 + ε)(1 + ℓ2 ∥n∥2)p > 2Cε,α ∥n∥−α (1 + ℓ2(∥n∥+ 1)2)2p.

For ∥n∥ sufficiently large independent of ℓ, the right hand side can be upper bounded by
C ′

ε,α′ℓ4p ∥n∥−α′
with α′ = α− 4p. Similarly, for ∥n∥ sufficiently large independent of ℓ,

the left hand side can be lower bounded by ℓ2p((∥n∥ + 1)2p − (1 + ε)2 ∥n∥2 p, which is
in turn eventually lower bounded by ℓ2pC for any C. Choose C = C ′

ε,α′ , and denote by
Aε,α′ > 0 the cut-off independent of ℓ beyond which both these bounds hold. Then we
require that ∥n∥α′

> Aε,α′ ∧ ℓ2p. Since ℓ > 1, it suffices that ∥n∥α′
> Aε,α′ℓ2p, and since

we can pick α arbitrarily large, it suffices that ∥n∥ > (1 + ε)ℓε for some ε > 0.

4.A.6 Bound on tail eigenvalue sum with respect to lengthscale

We now prove the result we set out to in this appendix: lemma 24 on page 69.

Proof of lemma 24. Write k for a Matérn kernel with lengthscale ℓ ≥ 1 and use the
simplified expression S(ω) = ℓd(1 + ℓ2 ∥ω∥2)−p with p = ν + d/2 for its spectral density.
Associate with k a periodic kernel kp such that kp(x) = k(x) on the interval |xi| ≤ 1
and let {cn} denote the Fourier coefficients of kp. By lemma 41, {cn} satisfy (III) with
constant Rε = (1 + ε)ℓε for all ε > 0. Therefore by lemma 38, for all n0 > Rε we have

∑
n>n0

λn ≤ C
∑

n>zε

b(⌈C ′n1/d/Rε⌉)

for some constants C,C ′ > 0. By lemma 40, for all ε, α > 0,

cn ≤ (1 + ε)S(n) + Cε,αS(0) ∥n∥−α . (4.14)

Since S(n) depends on n only through its norm ∥n∥, let us write κ(∥n∥) = S(n), and
note that κ(0) = ℓd. Note that κ is monotonically decreasing. Now, recalling that
b(z) = max {cn : z ≤ ∥n∥ ≤ z + 1} and using eq. (4.14), we have

b(z) ≤ (1 + ε)κ(z) + Cε,αℓ
dz−α,

and therefore the sum in section 4.A.6 can be bounded as

∑
n>n0

λn ≤
∑

z>n0

C(1 + ε)κ(⌈C ′z1/d/Rε⌉) + C ′
ε,αℓ

d⌈C ′z1/d/Rε⌉−α (4.15)
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Since we can choose α, we can always make the second term lower order. To handle the
first term, consider ∑z>n0 κ(⌈C ′z1/d/Rε⌉). We will relax the ⌈·⌉ and set C ′ = 1, as both
contribute at most a constant factor to the sum. Since κ(z) is monotonic, we can then
bound the relaxed sum using an integral. That is,

∑
z>n0

κ(z1/d/Rε) ≤
∫

z>n0
κ(z1/d/Rε)dz = ℓd

∫
n>n0

(
1 + (ℓ2/R2

ε)z2/d
)−p

dz

≤ ℓ−2νR2p
ε

∫
z>n0

z− 2ν+d
d dz ≤ Cℓ−2ν+2pεn

− 2ν
d

0 .

The result as stated follows by substituting this bound into eq. (4.15), relabelling 2pε 7→ ε,
and inserting a constant term into the condition on n0 to account for the use of the
simplified spectral density.

Appendix 4.B Proofs of improved regret bounds for
the GP-UCB algorithm

Both theorems 31 and 32 on page 75 follow from choosing specific values for parameters
in previous results and simplifying. For both, recall that the regret of GP-UCB can be
bounded as

RT ≤
√
T (√γT∥f∥k1ℓν + γT ) . (4.16)

Proof of theorem 31 (discretisation). From theorem 26 on page 71 (and see remarks
afterwards discussing the relationship with lengthscale), we have

γA
T ≤ CεT

ε
(
n0 + n

− 2ν
d

0 T ζ+1−b(d+2ν) + T 1−ζ/d
)

(∀ε > 0).

Let n0 = T a and ℓ = T b, with

a = d(d+ 1− b(d+ 2ν))
d(d+ 1) + 2ν and b = d(d+ 1)

d2(2ν + 1) + 4ν(d+ ν) ,

and choose
ζ = 2aν + db(d+ 2ν)

d+ 1 .

Substituting into our bound on γT , we have

γT ≤ CεT
x+ε (∀ε > 0) where x = d(d+ 1)

d2(1 + 1
2ν

) + 2d+ 2 ,
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leading to an overall bound on regret of the stated form.

Proof of theorem 32 (uniformly bounded eigenfunctions). From theorem 29 on page 73,

γT ≤ Cε

(
n0 log T + ℓ−2ν+εTn

− 2ν
d

0

)
(∀ε > 0).

Choosing, n0 = T
d

d+ν and ℓ = T
d

4ν(d+ν) we obtain γT ≤ CεT
d

d+ν
+ε for all ε > 0. Substitut-

ing these into eq. (4.16) yields the result.
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Chapter 5

Hierarchical GP Optimisation

We now introduce the main algorithmic contribution of part I, a hierarchical GP-UCB
method that uses the bound on information gain developed in chapter 4 to attain strong
bounds on regret and computational complexity without sacrificing practical performance.

5.1 The Partitioned GP-UCB algorithm

Our base algorithm is detailed in fig. 5.1. We will use it to explain the main idea and
derive regret bounds. Later, we will provide modifications to handle discretisation and
acquisition costs and make the algorithm adaptive.

The key element of the algorithm is a sequence of covers {At}, sets consisting of axis-
aligned hypercubes overlapping at their boundaries only, such that for all t ≥ 1,

⋃
{A ∈ At} = [0, 1]d and ρ(A) ≤ (N(A) + 1)−b (∀A ∈ At), (5.1)

where N(A) denotes the number of observations in the set A ⊂ [0, 1]d, ρ(A) its diameter
(defined with respect to the infinity norm) and b ∈ (0,∞) is the splitting parameter,
which needs to be specified a priori (determined shortly as a function of ν and d only).
The construction itself is simple: take A1 =

{
[0, 1]d

}
; for t > 1, split any A ∈ At that

does not satisfy eq. (5.1) into 2d elements by cutting it in half across each dimension.

Comparing the property in eq. (5.1) with the statements of theorems 26 and 29 on page 71
and on page 73, we see that for a sufficiently high splitting parameter b, the information
gain associated with the observations on each element A ∈ At at time step t, denoted
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Algorithm: Partitioned GP-UCB
Parameters: δ ∈ (0, 1), splitting factor b ∈ (0,∞)
Initialisation: let A1 =

{
[0, 1]d

}
and H1 = ∅

For each t ∈ N:
1. For each A ∈ At, let (µA

t , σ
A
t ) = GPR(1 + 1/t2,HA

t ) with

HA
t = {(x, y) ∈ Ht : x ∈ A}

and compute the maximum of

uA
t (x) = µA

t (x) + βA
t (δ)σA

t (x),

denoting by xA
t ∈ A the maximiser, where βA

t = βt(δ/ηT ) with

βt(δ) = R + B
√

2(γt + 1 + log(1/δ)) and ηT = 4(T + 1)bd.

2. Select Xt as an xA
t corresponding to a maximal uA

t (xA
t ) for A ∈ At. Observe Yt

corresponding to Xt and store the observation:

Ht+1 = Ht ∪ {(Xt, Yt)} .

3. Denote by At the element of At such that Xt ∈ At. Let

N(At) = |HA
t+1|,

and denote by ρ(At) the diameter of element At. If

ρ(At) > (N(At) + 1)−b,

let At+1 = (At \ {At}) ∪ split(At), else At+1 = At.

Here, the split operation in step 3 takes a hypercube A and returns a set of 2d

hypercubes by cutting A in half across each dimension.

Figure 5.1: Partitioned GP-UCB algorithm.
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γA
t , satisfies

γA
t ≤ CεN(A)ε ≤ Cεt

ε (∀ε > 0).

Therefore, using the standard GP-UCB concentration inequality (theorem 14 on page 45),
for any δ′ ∈ (0, 1), A ∈ At and all x ∈ A,

|f(x)− µA
t (x)| ≤ σA

t (x)
(
R + B

√
2 (γt + log(1/δ′)

)
≤ Cε,δN(A)− 1

2 +ε,

for all ε > 0, where (µA
t , σ

A
t ) = GPR( · ,HA

t ) is a GP regressor constructed with just
the observations contained within A. This concentration result matches up to the
arbitrarily small ε the result we would obtain through Azuma-Hoeffding if the observations
in each cover element A were independent.

To obtain a bound holding with probability 1− δ for all t ≤ T , A ∈ At and x ∈ A, we
first find a set BT such that At ⊂ BT for all t ≤ T with probability one and bound its
size. In lemma 48 on page 106, we show that for such BT with |BT | ≤ ηT = 4(T + 1)bd

exists. We then take a union bound over the elements of BT with confidence parameter
δ′ = δ/ηT .1

5.2 Regret analysis

We now state, discuss and provide a proof of our main result on the regret incurred by
Partitioned GP-UCB. We show that the regret is sublinear under very weak smoothness
assumptions and near-minimax-optimal when the eigenfunctions of the reproducing kernel
are assumed to be uniformly bounded independently of scale.

5.2.1 Overview of results

Our main result concerning the regret incurred by Partitioned GP-UCB is:

42 Theorem. Let the splitting parameter b ≥ 0 be chosen such that for the kernel kν

on [0, ρ]d, ρ < n−b implies γn ≤ Cεn
ε for all ε > 0. Then the regret incurred running

Partitioned GP-UCB for T steps is bounded as

RT ≤ CT
2db+1
2db+2 +ε (∀ε > 0).

1We can actually do slightly better. In Janz, Burt et al. (2020) we show through a martingale argument
that using ηt (≤ ηT ) suffices. However, using ηt complicates both the proofs and implementation while
providing no perceptible improvement in empirical performance.
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Examining the bound in theorem 42, it is clear that Partitioned GP-UCB converges to
an optimum as long as there exists a b such that reducing the diameter of a set at a
rate of n−b leads to information gain for the corresponding kernel that is bounded by
an arbitrarily small polynomial of n. The higher the splitting parameter b, the more
frequently the algorithm splits and the higher the resulting regret.

We can use the bounds derived in chapter 4 to select suitable values of b. First, using
the discretisation bound on information gain from theorem 26 on page 71, we have:

43 Corollary. Under the usual assumptions, the regret after T steps of running Parti-
tioned GP-UCB on Hkν ([0, 1]d) for ν > 1 with b = d+1

d+2ν
is bounded as

RT ≤ CεT
d(2d+3)+2ν
d(2d+4)+4ν

+ε (∀ε > 0).

The result in corollary 43 is significantly stronger than those for standard GP-UCB
algorithms, in that it is sublinear (and therefore guarantees convergence in a global
optimisation sense) for all d and ν > 1. As discussed at the end of section 4.2.1, a slightly
more careful analysis can extend this result to hold for all ν > 0. In contrast, the regret
of GP-UCB is only guaranteed to be sublinear for ν and d satisfying ν > d2/2.

Alternatively, using theorem 29 on page 73, we obtain:

44 Corollary. Suppose kν, ν > 0, has eigenfunctions that are uniformly bounded
independently of scale (definition 28). Then, under the usual assumptions, the regret
after T steps of running Partitioned GP-UCB on Hkν ([0, 1]d) with b = 1

2ν
is bounded as

RT ≤ CεT
d+ν

d+2ν
+ε (∀ε > 0).

The regret bound given in corollary 44 matches the algorithm agnostic lower bound on
worst-case expected regret given by Scarlett, Bogunovic et al. (2017a) to within a factor
of T ε. Furthermore, using the standard trick for converting bandit algorithms to global
optimisation algorithms (Bubeck et al., 2011), under the assumptions of corollary 44, the
time to simple regret SRT ≤ ∆, denoted τ∆, is bounded as

τ∆ ≤ Cε

( 1
∆

)2+ d
ν

+ε

(∀ε > 0).

This matches the respective algorithm agnostic lower bounds up to a ∆−ε factor. However,
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since corollary 44 relies on uniform boundedness of eigenfunctions, we can only claim
this result for the case d = 1, ν = 1

2 (as discussed in section 4.4).

5.2.2 Proof of main result

The proof of theorem 42 relies on the following two lemmas:

45 Lemma. The number of all cover elements used running Partitioned GP-UCB for T
steps can be bounded as

| ∪t≤T At| ≤ Cd,νT
db

db+1 + |A1|,

where Cd,ν > 0 depends on d and ν only.

46 Lemma. Given δ ∈ (0, 1), with probability 1− δ, for all t ≤ T , all A ∈ ⋃t≤T At and
all x ∈ A,

|µA
t (x)− f(x)| ≤ βA

t (δ)σA
t (x),

where βA
t = βt(δ/ηt),

βt(δ) = R + B
√

2(γt + log(1/δ)) and ηt = 4(t+ 1)bd.

The first lemma bounds the number of cover elements used by the algorithm. We leave
in an explicit dependence on |A1|. While the base algorithm always uses A1 = [0, 1]d, we
will relax this shortly. The second lemma is our main concentration result.

The proof of the main result is a minor modification of that for GP-UCB, as given in
Srinivas, Krause, S. M. Kakade et al. (2009) and Chowdhury et al. (2017).

Proof of theorem 42. For each x ∈ [0, 1]d let At(x) be an element of At such that

At(x) ∈ arg max
A∈At:x∈A

µA
t (x) + βA

t σ
A
t (x).

That is, At(x) is an element of At on which the upper confidence bound associated with
x is the highest. This is a technicality to deal with points on the overlapping boundaries
of cover elements.

For any x ∈ [0, 1]d, we have that uAt(x)
t (x) ≤ u

At(Xt)
t (Xt) by the definition of Xt. Therefore

this also holds for x⋆ ∈ arg maxx∈[0,1]d f(x). Expanding this expression and applying
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lemma 46, we bound the per-step regret rt as

rt = f(x⋆)− f(Xt) ≤ 2βAt(Xt)
t σ

At(Xt)
t (Xt)

with probability 1 − δ for all t ≥ 1. This is the same construction as in theorem 21,
bounding per-step regret with twice the confidence width at Xt.

We now sum the squares of per-step regrets up to the horizon. We have

T∑
t=1

r2
t ≤ 4

T∑
t=1

(βAt(Xt)
t )2(σAt(Xt)

t (Xt))2 ≤ 4
T∑

t=1

∑
A∈At

1{Xt ∈ A}(βA
t )2(σA

t (Xt))2,

where the second inequality accounts for points that fall into multiple cover elements.
Now, denote by ÃT = ⋃

t≤T At, the set of all cover elements created until time T , and
define the initial time for an element A ∈ ÃT , as τ(A) = min{t : A ∈ At} and the
terminal time as τ ′(A) = max{t : A ∈ At}. Then,

T∑
t=1

∑
A∈At

1{Xt ∈ A}(βA
t )2(σA

t (Xt))2 =
∑

A∈ÃT

τ ′(A)∑
t=τ(A)

1{Xt ∈ A}(βA
t )2(σA

t (Xt))2

Bounding the sum of up to τ ′(A)-many variances on A with γA
τ ′(A) and using that, by the

construction of the cover, γA
τ ′(A) ≤ Cε(τ ′(A))ε ≤ CεT

ε for all ε > 0, both for the explicit
γA

τ ′(A) term and that contained within βA
τ ′(A),

T∑
t=1

r2
t ≤ C

∑
A∈ÃT

(βA
τ ′(A))2γA

τ ′(A) ≤ Cε,δT
ε
∑

A∈ÃT

1 = Cε,δT
ε

∣∣∣∣∣
T⋃

t=1
At

∣∣∣∣∣ .
Using lemma 45 to bound the cardinality of the set on the right hand side and applying
Cauchy-Schwarz, we conclude that

RT ≤
√
T
∑T

t=1 r
2
t ≤ C ′

ε,δT
ε/2T

db+1
db+2 .

5.3 Computational complexity

While Partitioned GP-UCB uses an independent Gaussian process regressor for each
A ∈ At and t ≤ T , at any given time-step t, we only need to fit up 2d regressors:

1. Either the element At such that Xt ∈ At split, creating 2d child elements that each
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require the fitting of a Gaussian process.

2. Or the element At did not split and therefore we require only an online Cholesky
update to up to 2d regressor to account for the new observation (Xt, Yt).

The regressors on all other elements can be cached. By the design of the algorithm, for
any A ∈ At, we have γA

t ≤ Cεt
ε. Recalling that standard sketching techniques allow the

computation of the GP regressor and prediction in time that scales only with information
gain, the overall runtime of Partitioned GP-UCB running on a finite domain D ⊂ [0, 1]d

can be bounded on the order of T 1+ε|D|. Therefore, for finite domains with functions of
any smoothness (for which a suitable splitting factor b can be derived), the runtime of
Partitioned GP-UCB is near-linear. This extends the result from Calandriello, Carratino
et al. (2020), which applies to smooth functions only.

To run on the convex domain [0, 1]d, Partitioned GP-UCB can be used with the same
discretisation scheme as GP-UCB (theorem 22 on page 60). For functions that are not
strongly differentiable, we have the following stronger result, proven in appendix 5.B.

47 Theorem. For the Partitioned GP-UCB algorithm on Hkν ([0, 1]d) for ν ≤ 1 with a
splitting factor b = 1

2ν
, the regret incurred evaluating the UCB only at the centre-point of

each A ∈ At is within a constant factor of that incurred by considering all x ∈ A.

With these choices of discretisation and using the sketching and batching methods of
Calandriello, Carratino et al. (2020), we obtain an overall runtime on the order of

T 1+ε when ν ≤ 1 and T 1+ dν
d+2ν

+ε otherwise, (5.2)

both holding for all ε > 0. The result on ν ≤ 1, and indeed the construction, corresponds
closely to the scheme used in the Hierarchical Optimistic Optimisation algorithm. We
suspect that there may be a way to extend the adaptive discretisation we use for ν ≤ 1
to all values ν > 0. However, our attempts to achieve this—by letting the number of
points for which the UCB is evaluated on each element depend on the diameter of the
element—have so far resulted in bounds that scale as T d.

5.4 Practical considerations

We now discuss a series of details that, while not relevant to the worst-case regret bound,
affect the practical performance of the algorithm.
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Adaptive construction The algorithm as given in fig. 5.1 is is not adaptive. This is
because the splitting condition used in step 3 depends explicitly on worst-case bounds
for the information gain. This is easy to fix. Rather than splitting based on the number
of points within the region, we can choose a constants z, Z > 0 and split whenever

γA
t = 1

2 log det(KXA
t XA

t
+ λ−1I) > ZN(A)z. (5.3)

It is clear that this appropriately controls the information gain on every cover element
A ∈ At. On the other hand, since for any ε > 0 the previous splitting lower bounded the
number of points required for a threshold of the type in eq. (5.3) to be exceeded, the
number of cover elements split by the adaptive algorithm is bounded to within a constant
factor of the original construction. The worst-case regret of the adaptive algorithm is
therefore within a CZT

z factor of the original.

Sequential tightening A large part of the empirical regret incurred by Partitioned
GP-UCB comes from newly created cover elements that contain few or no observations.
When using a fixed discretisation, we can use the following sequential tightening trick
to reduce this regret. For each x ∈ [0, 1]d and t ≤ T denote by At(x) an element of At

containing x. Then, with probability at least 1− δ,

f(x⋆) ≤ u
At(x)
t (x) (∀t ≤ T ) and therefore also f(x⋆) ≤ min

{
uAτ (x)

τ (x) : τ ≤ t
}

for all x ∈ [0, 1]d. Thus, we can obtain a tighter bound on f for each point in the
discretisation by only updating the upper confidence bound when a newly computed
value is lower. With the use of this trick, splitting a cover element no longer increases
the upper confidence bound on the points contained within it.

Sketching While kernel sketching can significantly decreases the computational com-
plexity of Partitioned GP-UCB, it tends to be slower than online Cholesky updates when
the number of observations is small. By construction, the number of observations used
within each regressor when running Partitioned GP-UCB tends to remain small, and the
benefits of sketching may be limited. We can combine the advantages of both online
Cholesky updates and sketching by switching between the two in an adaptive manner:
using either a threshold based on the number of data points in the region or on current
per-step computation time.
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Initial cover and warm-starts The algorithm thus far assumed A1 = {[0, 1]d}.
This is, however, not necessary. For the regret bound to hold, we merely require that
|A1| ≤ CT

db
db+1 for some C independent of T (see lemma 45). Consequently, if using a

double-and-guess approach for unknown parameters, say T or B, when doubling occurs
we can simply continue using the existing cover. Moreover, in the scenario where the
algorithm is warm-started with some previously collected observations, we are free to
construct A1 so as to minimise the computational cost of the initial iterations.

5.5 Experimental validation

We validate the proposed Partitioned GP-UCB algorithm with and without sequential
tightening by benchmarking it on a number of standard two dimensional test functions.
We compare performance against the standard GP-UCB algorithm and the near-minimax-
optimal SupKernelUCB algorithm, all used with a fixed discretisation.2

Experiment setup We use standard two-dimensional test functions (Surjanovic et al.,
2013), with domains scaled to [0, 1]2 and range scaled to [−1, 1]. These are discretised into
a 100×100 regular grid. We add independent centred Gaussian noise to each observation,
with variance 1/20 (low noise) and 1/2 (high noise). In table 5.1, we report regret after
1000 interactions estimated using 10 seeds, normalised as a fraction of expected regret
incurred by uniform sampling; and in table 5.2, the average runtime.

Baselines We implement GP-UCB, SupKernelUCB, Partitioned GP-UCB (PGP-UCB)
and Partitioned GP-UCB with Sequential Tightening (PGP-UCB-ST). All use:

• A Matérn-1/2 kernel with lengthscale ℓ = 1.0. The lengthscale was chosen as maxim-
ising performance for the standard GP-UCB algorithm from the set {0.1, 0.25, 1.0}.

• Confidence parameter δ = 0.05, the exact subGaussianity constant B ∈ {1/20, 1/2}
and an (arbitrarily chosen) RKHS norm bound R = 1.0.

• Online Cholesky updates.

We chose not to include BKB and BBKB (Calandriello, Carratino et al., 2019; Calandriello,
Carratino et al., 2020) in our comparisons. Our preliminary experiments suggested that
these are considerably slower for the horizon lengths considered here and suffer higher

2Code for experiments: djanz.org/pgp_ucb/code
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regret. Since they can be combined with each of the methods considered, any benefits
they may provide are orthogonal to our work. We also do not benchmark against HOO.
The assumptions and parameters within HOO are not easily comparable with those used
here, particularly seeing as HOO does not use a fixed discretisation.

Table 5.1: Regret ± standard error for the benchmarked algorithms on standard test
functions, expressed as a fraction of regret incurred by uniform sampling. 10 seeds.

Noise Function GP-UCB SupKernelUCB PGP-UCB PGP-UCB-ST

Low

Bukin N. 6 0.13± 0.00 1.01± 0.00 0.19± 0.01 0.22± 0.02
6-Hump Camel 0.18± 0.00 1.00± 0.02 0.21± 0.01 0.14± 0.01
Eggholder 0.11± 0.00 1.04± 0.00 0.29± 0.06 0.14± 0.01
Rosenbrock 0.17± 0.00 1.01± 0.02 0.25± 0.01 0.14± 0.00
Schaffer N. 2 0.07± 0.02 1.01± 0.01 0.11± 0.01 0.12± 0.01

High

Bukin N. 6 0.57± 0.01 1.01± 0.00 0.66± 0.01 0.63± 0.01
6-Hump Camel 0.61± 0.01 1.00± 0.02 0.62± 0.01 0.54± 0.01
Eggholder 0.69± 0.01 1.04± 0.00 0.89± 0.01 0.82± 0.00
Rosenbrock 0.52± 0.01 1.01± 0.02 0.49± 0.01 0.47± 0.01
Schaffer N. 2 0.41± 0.01 1.01± 0.01 0.54± 0.02 0.50± 0.01

Results The results, shown in table 5.1, suggest that sequential tightening generally
improves the performance of Partitioned GP-UCB. The performance of GP-UCB and
PGP-UCB-ST is similar, with relative performance depending more on the function
than on the level of noise. SupKernelUCB failed to significantly outperform the uniform
random baseline across all of the problems—this is unsurprising, Shawe-Taylor et al.
(2010) (slide 122) show similarly poor performance for the closely related SupLinRel
algorithm on a linear bandit problem with T = 5000. Runtime results in table 5.2 show
that Partitioned GP-UCB algorithms are much faster than GP-UCB and SupKernelUCB.

Table 5.2: Average runtime in seconds for each benchmarked algorithm.

GP-UCB SupKernelUCB PGP-UCB PGP-UCB-ST
3300 3500 9.3 8.3
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5.6 Discussion

We are now at the end of part I of this thesis. In this chapter, we have outlined our main
algorithmic contribution, a hierarchical GP-UCB algorithm that uses our new bounds on
the scaling of information gain with the diameter of the domain together with regressors
fitted to carefully constructed subsets of the observations to obtain strong guarantees on
regret for a large set of continuous functions while retaining empirical effectiveness.

Our method can be seen to combine ideas from SupKernelUCB and HOO to improve
the classic GP-UCB algorithm. While, unlike GP-UCB, it only uses nearby observations
when computing the upper confidence bound for a given point, this works well for the
Matérn kernel, where the influence of observations rapidly decreases with Euclidean
distance. Indeed, the algorithm can be seen as a generalisation of GP-UCB: as ν →∞,
the optimal cover size in Partitioned GP-UCB tends to one for all time steps, recovering
the base GP-UCB algorithm. Our main technical results are:

• We improve over the worst-case regret of GP-UCB for all ν, d > 0 while, unlike
SupKernelUCB, remaining competitive with GP-UCB in practice.

• Under an additional assumption on the Matérn kernel used, we derive near-optimal
bounds for both regret and simple regret. We have previously verified that this
assumption holds for the case ν = 1/2, d = 1.

• We show that for ν ≤ 1 on [0, 1]d and for ν > 0 on a finite subset of [0, 1]d, our
algorithm attains near-linear (and therefore near-optimal) runtime. This extends
the results for the BBKB algorithm, which attains that rate for ν =∞. We show
that, in practice, Partitioned GP-UCB is much faster than the standard GP-UCB
algorithm even without using sketching methods.

Our work leaves a number of important questions unresolved:

• Uniform boundedness. Our strongest results on regret rely on the assumption
of uniform boundedness of the kernel eigenfunctions. While this assumption is
common in the literature, it has only been confirmed to hold in a number of special
cases. Confirming when this holds more generally is an interesting open question.

• Computational complexity. In the case of Hkν ([0, 1]d) with ν ≤ 1, we derived
a method of adaptive discretisation for Partitioned GP-UCB that attains near-
optimal bounds on computational complexity without affecting the regret bounds.
However, we failed to extend this result to the case ν > 1. Such an extension would
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significantly strengthen the case for hierarchical GP-UCB algorithms.

• Hyperparameter tuning. In practical applications, lengthscale and other algorithm
parameters are often chosen online based on the observations. Can we incorporate
this into hierarchical GP-UCB methods while retaining our regret bounds?

• Confidence intervals for kernel ridge regression with online design. Finally, it
remains an open question whether the confidence intervals presented in theorem 14
can be improved.

We find the last of these particularly interesting—a positive answer may make the base
GP-UCB algorithm near-optimal.
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Appendix 5.A Proofs of theoretical results

Proof of lemma 45. First, any element A ∈ ÃT was either in the original cover A1 or
was created by the splitting of a cover element in ÃT \ AT into 2d elements. Therefore

|ÃT | = |A1|+ 2d|ÃT \ AT |.

Denote ΘT = ÃT \ AT . Writing ρ0 ∈ (0, 1] for the diameter of any element A ∈ A1

(e.g. ρ0 = 1 if A1 = {X}). Then, for any given T ,

|ΘT | ≤ max
X1,...,XT

|ΘT | = max
X1,...,XT

∞∑
i=0

∑
A∈ΘT

1{ρA = 2−iρ0},

where the maximisation problem can be understood as arranging the points X1, . . . , XT

so as to maximise the number of splits that occur. We now proceed to upper bound the
solution to this maximisation problem by considering only a subset of the constraints
imposed by the splitting procedure.

First constraint: we have a budget constraint derived from placing only T points. Write
NA

t for the number of points in A ⊂ Rd at time t. Let τ(A) = min{t : A ∈ At} and
τ ′(A) = max{t : A ∈ At}. Suppose there exists a lower bound M(·) such that

M(ρA) ≤ NA
τ ′(A) −NA

τ(A)

for all A ∈ ΘT . Then

∞∑
i=0
M(2−iρ0)

∑
A∈ΘT

1{ρA = 2−iρ0}

≤
∞∑

i=0

∑
A∈ΘT

(NA
τ ′(A) −NA

τ(A))1{ρA = 2−iρ0}

=
∑

A∈ΘT

NA
τ ′(A) −NA

τ(A) ≤
∑

A∈ÃT

NA
τ ′(A) −NA

τ(A)

=
∑

A∈ÃT

τ ′(A)∑
t=τ(A)

1{Xt ∈ A} =
T∑

t=1

∑
A∈AT

1{Xt ∈ A}

=
T∑

t=1
|{A ∈ At : Xt ∈ A}| ≤ 2dT.
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Now we verify that a suitable M(·) exists; this can be interpreted as the minimum cost
of splitting an element A ∈ ΘT . Because A split,

NA
τ ′(A) + 1 > ρ

−1/b
A ≥ NA

τ ′(A)

Suppose that A′ is the element that split to create A. Then ρA′ = 2ρA and τ ′(A′) + 1 =
τ(A). Therefore,

NA
τ ′(A) −NA

τ(A) ≥ NA
τ ′(A) −NA′

τ ′(A′) − 1 ≥ ρ
−1/b
A (1− 2−1/b)− 2 = M(ρA).

Second constraint: a supply constraint. There are at most ⌈ρ−d
0 ⌉ elements of diameter ρ0,

and therefore at most ⌈ρ−d
0 ⌉2di elements of diameter 2−iρ0 can be split, leading to

∑
A∈ΘT

1{ρA = 2−i} ≤
⌈
ρ−d

0

⌉
2di.

Since M(2−iρ0) increases with i, the solution to the relaxed optimisation problem will
be to buy all the available A with smallest diameter, subject to the supply and budget
constraints. Suppose the smallest A split with this strategy has a diameter 2−zρ0 for some
z ∈ N. Then, since the supply constraint is binding and budget constraint is satisfied,

z−1∑
i=0

M(2−iρ0)2di
⌈
ρ−d

0

⌉
≤ 2dT.

Writing ρ0 = CTα for some C > 0 and using the geometric series formula to solve
for 2z, we obtain 2z = CT

b
bd+1 , a quantity independent of α. Counting all the cover

elements of diameters 20ρ0, . . . , 2zρ0, we have that ∑z
i=0 2di = C2dz ≤ C ′T

db
db+1 . Since this

construction upper bounds |ΘT |, we have |ÃT | ≤ CT
db

db+1 as claimed.

48 Lemma. For each t ∈ N there exists a set Bt with |Bt| ≤ 4(t+ 1)bd such that At ⊂ Bt

with probability one.

Proof. Let B0 = A1 and define recursively Bi+1 to be the set of the hypercubes created
by splitting each element in Bi into 2d hypercubes. Let ρ0 ∈ (0, 1] be the diameter of
elements in A1. Trivially,

At ⊂
⋃
i≥0

Bi =⇒ At ⊂
⋃
i≥0

(
Bi ∩ At

)
.

106



Suppose that Z ∈ Bi ∩ At for some i ≥ 0. By the splitting condition,

Z ∈ At \B0 =⇒ ρZ > (NZ
t + 1)−b ≥ (t+ 1)−b.

Also, Z ∈ Bi implies ρZ ≤ 2−iρ0. Therefore,

(t+ 1)−b ≤ ρZ ≤ 2−iρ0.

From this we conclude that i ≤ Jt
.= ⌊log2

(
(t+ 1)bρ0

)
⌋. Let Bt = ⋃

i≤Jt
Bi. Since for all

i > Jt, Bi ∩ At = ∅, we have At ⊂ Bt. Now we need to bound the cardinality of Bt. We
have |Bi| = ⌈ρ−d

0 ⌉2di, so

|Bt| =
Jt∑

i=0
|Bi| = ⌈ρ−d

0 ⌉
Jt∑

i=0
2di ≤ ⌈ρ−d

0 ⌉2dJt+1 ≤ 4(t+ 1)db.

Appendix 5.B Proof of discretisation result

We prove the constant-size discretisation result claimed in theorem 47. This proof uses
the same counting argument and monotonicity argument as the proof of lemma 45, and
the same Hölder continuity argument as theorem 22. We recommend reading those first.

Proof of theorem 47. On any cover element A, by the same Hölder continuity argument
as in theorem 22, the excess per-step regret associated with the discretisation is bounded
as Cdρ

ν
A. We can therefore bound the excess regret R′

T as

R′
T ≤ Cd

T∑
t=1

∑
A∈At

ρν
A1{Xt ∈ A} =

∑
A∈ÃT

(τ ′(A)− τ(A)) ρν
A,

where as before, ÃT = ⋃
t≤T AT , and τ(A), τ ′(A) are the initial and final times for an

element A ∈ ÃT respectively.

Now, since with the constant size discretisation scheme we contribute at most one point
to any cover element per time step, we can bound τ ′(A)− τ(A) by the number of points
needed to split A. By the splitting rule, this is at most ρ−1/b

A . With that,

R′
T ≤

∑
A∈ÃT

ρ
−1/b+ν
A =

∞∑
i=0

2−i(ν−1/b)
1{A ∈ ÃT}, (5.4)
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where we used that all A ∈ ÃT have diameters of the form 2i for i ∈ N. To upper bound
the excess regret, it remains to construct a set ÃT that maximises the right hand side.

As in the proof of lemma 45, the weight factor of each term in the summation of eq. (5.4),
in this case 2−i(ν−1/b), decreases with i. Therefore, to maximise the sum, we place each
point in turn in the largest cover element that has not yet split. Suppose the smallest A
split with this strategy after placing T points has a diameter 2−z for some z ∈ N. Then,
since there are 2di elements at each depth i (supply constraint), we can bound the excess
regret as

R′
T ≤

z−1∑
i=0

2id2−i(ν−1/b).

In the proof of lemma 45, we showed that for this selection strategy, 2z = CT
b

db+1 .
Together with the geometric sum formula, this gives

R′
T ≤ CT

db+1−bν
db+1 .

Now compare this with the result for the regret of Partitioned GP-UCB as a function of
the splitting parameter b, given in theorem 42. We have that the discretisation regret is
dominated whenever 2(1− bν) ≤ 1. This is satisfied by our choice b = 1

2ν
.
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Part II

Reinforcement learning with
neural-linear models





Overview of part II

Within part II, we tackle the problem of exploration in deep reinforcement learning. Our
focus here shifts from theory to practice, with our overall goal being that of developing a
simple model-free reinforcement learning algorithm with demonstrably strong performance
on both hard tabular exploration tasks and on the Atari Learning Environment benchmark
(ALE, M. G. Bellemare et al., 2013).

While exploration is the main focus of the theoretical bandit-based perspective on
reinforcement learning, it is largely sidelined within applied reinforcement learning
research: TD-Gammon, a notable early application of reinforcement learning to the
game of Gammon, succeeded in large part because the stochasticity inherent in the game
provided for adequate exploration (Tesauro et al., 1995; Pollack et al., 1997); recent
breakthroughs combining reinforcement learning with convolutional neural networks to
tackle classic Atari 2600 games made very little progress on games that require exploration
(Mnih et al., 2015); modern reinforcement learning methods that have been used to
tackle Go, Chess and other complex board games still use naïve exploration methods
and rely instead on enormous quantities of computation and data (Silver, Huang et al.,
2016; Silver, Hubert et al., 2017; Schrittwieser et al., 2020).

As the combination of deep learning and reinforcement learning starts to see real-life
use, with applications ranging from the design of computer programs, novel materials,
chemicals and drugs, through to the protein folding problem, robotics and autonomous
driving (Janz, Westhuizen et al., 2018; Jumper et al., 2021; Kendall et al., 2019), finding
robust, scalable exploration methods remains a key challenge. In this part, we focus on
particular this challenge, using insights from the bandit-based regret-oriented perspective
on reinforcement learning to develop effective and scalable algorithms, and combine these
heuristically with deep learning.
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Contributions

In part II we develop Successor Uncertainties (SU), a randomised value function model
(Osband, Van Roy, D. J. Russo et al., 2019) that when combined with posterior sampling
and neural network function approximation gives rise to an effective deep reinforcement
learning algorithm. Successor Uncertainties models the value for a state-action pair
(s, a) of an unknown MDP as a linear product of the form Q(s, a) = ⟨w,φ(s, a)⟩, where
w ∈ Rd are some weights, inferred using standard conjugate Gaussian linear regression,
and φ(s, a) ∈ Rd is an embedding learnt using a neural network. We refer to models of
this form as neural-linear.

Neural-linear models have the appeal of simplicity, in that they involve only minor
modifications of the well-studied Deep Q-Networks framework (DQN, Mnih et al., 2015).
Our key observation within part II is that many previous algorithms based on neural-
linear models are flawed (e.g. Moerland et al., 2017; Azizzadenesheli et al., 2018; Touati
et al., 2019; O’Donoghue et al., 2018; Lipton et al., 2018), and especially so when
combined with posterior-sampling-based exploration. We show that these and other
similar algorithms fail to outperform uniform random exploration on standard sparse-
reward hard-exploration tasks, examine their shortcomings, and look at how erroneous
experimental methodology had obscured these.

Our proposed model, Successor Uncertainties, introduces an additional constraint in
the neural network embeddings φ that addresses the issues present within previous
neural-linear methods. The basis of the method is the observation that if the quantity
predicted, the Q-function, obeys a temporal difference relationship, the uncertainty about
it ought to as well. And since the uncertainty estimates given by a linear Gaussian model
are based solely on input locations (the neural network embeddings), these too need to
obey a temporal difference structure. We show that the appropriate structure is that
of a successor representation (Dayan, 1993), and that it can be computed with only
minor modifications to the standard DQN model and optimisation framework.

We show that our Successor Uncertainties model can provide efficient exploration on the
challenging Deep Sea tabular exploration benchmark (Osband, Van Roy, D. J. Russo
et al., 2019) and present strong results on Atari 2600 games, demonstrating that our
method can be scaled to tasks that require neural network function approximation.
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Structure and attribution

While part II is written to be self-contained, it uses concepts and basic results from
bandit algorithm and linear modelling literature throughout. Readers unfamiliar with
these topics may wish to consult chapters 1 and 2 respectively. Part II comprises three
chapters:

1. Chapter 6 introduces reinforcement learning, including: Markov Decision Pro-
cesses, planning, online episodic reinforcement learning, corresponding optimistic
algorithms and the basics of deep reinforcement learning.

2. Chapter 7 provides an overview of feature-linear reinforcement learning algorithms,
with a particular focus on those previously combined with deep reinforcement
learning. These are evaluated on the Deep Sea baseline, with insights obtained
later used within the design of our Successor Uncertainties.

3. Chapter 8 describes the Successor Uncertainties model, first in a tabular setting,
with experiments on the Deep Sea baseline, and then as a deep reinforcement
learning algorithm, with corresponding results on the Atari Learning Environment.

The core idea presented here was published as Janz, Hron, Mazur, Hofmann, Hernández-
Lobato & Tschiatschek (2019), and was the result of an internship at Microsoft Research
Cambridge (MSR). We thank MSR for the computational resources used for the Atari
Learning Environment experiments. Much of the presentation of the material presented
here was influenced by later discussions with Ian Osband and André Barreto at Deepmind,
as well as Laurence Aitchison and Adam Yang. Adam Yang generated all experimental
data for the Deep Sea experiments featuring in chapter 7. José Miguel Hernández-Lobato
provided feedback on the writing.
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Chapter 6

An introduction to reinforcement
learning

In this introductory chapter we provide a basic overview of reinforcement learning.
We begin by providing a terse introduction to Markov decision processes, the standard
model for a stateful environment used within reinforcement learning. We then introduce
the core problem tackled in this thesis, that of online episodic reinforcement learning,
together with standard methods for solving it, based on optimism and posterior sampling.
We finish by looking at the basics of deep reinforcement learning and at the Atari Learning
Environment.

6.1 Markov decision processes

A Markov decision process (MDP) is a mathematical model for sequential decision
making in a stateful environment with stochastic state transitions. Within this section,
we cover the standard formalism around MDPs together with the basics of value functions,
policy evaluation and planning. We recommend Szepesvári (2021) for a more thorough
introduction to these topics, and the theory of reinforcement learning in general.

6.1.1 The MDP formalism

We define a finite MDP M to a tuple (S,A,R,P ,P0, H, γ), where: S and A are finite
sets of states and actions respectively; R is a conditional reward distribution, a map from
S ×A to the set of probability measures on R; P is a conditional transition distribution,
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a map from S ×A to the set of probability measures on S; P0 is a measure on S defining
the initial state distribution; H ∈ N is the interaction horizon; and γ ∈ [0, 1) is the
discount factor. We write M for the set of all finite MDPs.

The interaction between a reinforcement learning agent and an MDP is as follows. The
agent starts with an initial state S0 sampled from P0. Thereafter, at each step h ∈ [H],
the agent finds itself in a state Sh ∈ S, and selects an action Ah ∈ A. In turn, the
environment returns the next state Sh+1 ∼ P(Sh, Ah) and a reward Rh ∼ R(Sh, Ah),
where we assume Rh = r(Sh, Ah) + εt for some r : S ×A 7→ [0, 1] and εh an independent,
subGaussian random variable. We call r the (mean) reward function.

A reinforcement learning agent is specified by a policy π, which is a map from S to the
set of measures over A such that P(Ah|Sh) = π(Sh)(Ah) for all h ∈ [H]. We denote the
set of all policies by Π. With each policy π ∈ Π in an MDP M ∈ M, we associated a
value, denoted Vπ

M , given by

Vπ
M

.= E
[
R0 + γR1 + γ2R2 + . . .+ γHRH−1

]
= E

∑
h<H

γhr(Sh, Ah),

where the expectation is with respect to the measure induced by the interaction between
the environment and the agent. For a given MDP M ∈M, any policy π⋆ ∈ Π satisfying

Vπ⋆

M = sup
π∈Π
Vπ

M
.= V⋆

M

is said to be optimal in M . We call V⋆
M the (optimal) value of M . The existence of

an optimal policy is easy to verify, but it need not be unique. To see that, construct
an MDP where each action is duplicated. The task of computing or approximating an
optimal policy is called planning; planning is the problem of reinforcement learning.

For ease, some of our later analysis will assume that the MDPs considered are tree-
structured. That is, that S = ∏

h<H Sh with Si ∩ Sj = ∅ for all i ̸= j and where s ∈ Sh is
reachable only within step h of interaction. We can convert any finite MDP with state
space S into a tree-structured MDP with state space S ′ = S × [H], mapping each s ∈ S
to (s, h) ∈ S ′. We denote by MT the set of tree-structured MDPs.

Somewhat unusually, we assume a discounted setting, where the value of future reward
is discounted geometrically by the factor γ ∈ [0, 1)—a common assumption in applied
RL literature—but also a fixed finite horizon H—more standard in theoretical work.
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Each of these assumptions individually ensures that V⋆
M is bounded for all M ∈M and,

consequently, that an optimal policy exists. We include both to more easily encompass
methods from across the two areas of literature within one framework, and will adjust
the methods as needed to accommodate this.

6.1.2 Value functions, policy evaluation and greedy policies

We now introduce value functions, policy evaluation and greedy policies. These concepts
underpin planning in MDPs.

We define value functions as follows:

• For a given MDP M ∈ M and policy π ∈ Π, we define the state-action value
function Qπ

M : S ×A 7→ R and the state value function V π
M : S 7→ R by

Qπ
M(s, a) = E

∑
h<H

γhr(Sh, Ah) | S0 = s, A0 = a

 and V π
M(s)=

∑
b∈A

π(s)(b)Qπ
M(s, b),

where we take 0/0 = 1 as needed to define the conditional expectation for all
(s, a) ∈ S ×A and where that expectation is taken with respect to the measure
given by the interaction of the policy π and the transition dynamics P , P0 of M .

• For a given MDP M ∈ M, we define the optimal state-action value function
Q⋆

M : S ×A 7→ R and optimal state value function V ⋆
M : S 7→ R by

Q⋆
M(s, a) = max

π∈Π
Qπ

M(s, a) and V ⋆
M(s) = max

b∈A
Q⋆

M(s, b).

We refer to state-action value functions as Q-functions.

For planning, we will need methods of computing Q⋆
M for a given MDP M ∈M or Qπ

M

for a given MDP M and policy π ∈ Π—the latter of these is known as policy evaluation.
A standard approach to both tasks is through the use of Bellman operators, defined:

• For an MDP M ∈ M, the Bellman operator for a policy π ∈ Π is the map
T π

M : RS×A 7→ RS×A given by

T π
MQ(s, a) = r(s, a) + γEs′∼P(s,a)Ea′∼π(s′)Q(s′, a′) (∀(s, a) ∈ S ×A).

• For an MDP M ∈ M, the associated Bellman optimality operator is the map
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T ⋆
M : RS×A 7→ RS×A given by

T ⋆
MQ(s, a) = r(s, a) + γEs′∼P(s,a) max

b∈A
Q(s′, b) (∀(s, a) ∈ S ×A).

Both T ⋆
M and T π

M are γ-contractions on RS×A under the metric induced by the infinity
norm. Therefore, by Banach’s fixed-point theorem, each operator has a unique fixed-point.
By inspection, these can be identified as Q⋆

M and Qπ
M respectively; that is, T ⋆

MQ
⋆
M = Q⋆

M

and T π
MQ

π
M = Qπ

M . Furthermore, for all q0 ∈ RS×A, (T ⋆
M)kq0 → Q⋆

M and (T π
M)kq0 → Qπ

M

as k → ∞ uniformly at a rate geometric in γ.1 Evaluating these for a finite k then
gives the standard iterative approximation approaches for Q⋆

M and Qπ
M respectively. For

tree-structured MDPs, these are exact after H iterations. Approaches to planning based
on such Bellman operator iteration and resulting reinforcement learning algorithms are
referred to as model-free.

Policy evaluation within finite MDPs can also be performed more directly by solving
a linear system of equations. Consider the Q-function and mean reward function as
vectors Qπ

M , r ∈ R|S||A| and write P π
M ∈ R|S||A|×|S||A| for a matrix with entries given by

[P π
M ](s,a),(s′,a′) = P(St+1 = s′, At+1 = a′|St = s, At = a) (6.1)

with respect to the measure induced by the interaction of π and M . Then,

Qπ
M =

∑
h<H

(γP π
M)hr ≈

∞∑
h=0

(γP π
M)hr = (I − γP π

M)−1r.

The approximation becomes accurate for large H and low γ. It can be made exact in a
tree-structured MDP by augmenting the state-space with an absorbing terminal state
with zero reward for all actions. Methods such as this, based on explicit models of the
transition and reward functions, are referred to as model-based.

We now define greedy policies. For a Q-function Q ∈ RS×A, we say that π̃ is greedy with
respect to Q if

supp π̃(s) ⊂ arg max
b∈A

Q(s, b) (∀s ∈ S).

We denote by GQ the set of all policies greedy with respect to Q. For any π̃ ∈ GQ⋆
M

we have V π̃
M = V ⋆

M , and thus any policy greedy with respect to Q⋆
M is optimal in M .

1See appendix A of Szepesvári (2010) for a proof of Banach’s fixed-point theorem and its consequences
in the context of Bellman operators.
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This reduces planning to the task of computing Q⋆
M .

6.1.3 Planning in MDPs

Planning is the problem of computing or approximating the optimal policy within an
MDP. It is the element differentiating reinforcement learning from bandit problems.
Algorithms considered in this thesis will be based on two basic approaches.

The first, value iteration (VI), uses the Bellman operator iteration to estimate Q⋆
π and

returns a policy greedy with respect to that estimate. Specifically, for a starting point
q0 ∈ RS×A and stopping time k ∈ N, VI returns π ∈ G(T ⋆

M)kq0. Since the iterative
estimate of the optimal Q-function converges uniformly at a geometric rate, for sufficiently
large k the value of the returned policy is close to optimal. VI is exact within tree
structured MDPs after H steps.

The second, policy iteration (PI), starts with an arbitrary π0 ∈ Π, defines a recursive
sequence of estimates by πi+1 ∈ GQπi

M and returns πk for some stopping time k ∈ N.
PI is based on the policy improvement theorem, which gives that for this construction,
Vπi+1

M ≥ Vπ
M , and is exact is in any finite MDP after a finite number of steps. However,

since each iteration requires solving policy evaluation, policy iteration is expensive. Many
modern RL algorithms perform what is known as generalised policy iteration (GPI,
Sutton, Barto et al., 1998), where each Qπi

M is approximated using only a few iterations
of the Bellman operator–based procedure, warm-started using Qπi−1

M .

6.2 Online, episodic reinforcement learning

We frame the problem tackled in part II as online episodic reinforcement learning, where
a reinforcement learning agent interacts with the same unknown MDP over multiple
episodes, and aims to minimise the regret it incurs over the course of the interactions.
In this section we formalise the relevant notions of regret and present the standard
optimistic and posterior sampling strategies for solving this problem. We end on the
framework of Randomised Value Functions and, in particular, the Randomised Least
Squares Value Iteration algorithm (RVF & RLSVI, Osband, Van Roy and Wen, 2016).
These will provide much of the theoretical basis for our Successor Uncertainties model.
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6.2.1 Problem definition

We consider minimising regret incurred over a series of L ∈ N episodes of interaction
with an unknown MDP M . At the start of episode l ∈ [L], the agent selects a policy
πl ∈ Π and, with some abuse of notation around the indexing, receives an initial state
SlH ∼ P0, with the following states, actions and rewards indexed as SlH+h, AlH+h, RlH+h

for h ∈ [H]. The choice of policy πl is allowed to depend on the history up to episode l,

HlH = (S0, A0, R0, S1, . . . , SlH).

We call an algorithmic construction for {πl} a reinforcement learning algorithm, and
measure its performance on an MDP M ∈M over L episodes by the expected regret,

ER(L, {πl},M) = E
∑
l<L

∑
h<H

γh (r⋆
h − r(SlH+h, AlH+h)) = E

∑
l<L

V⋆
M − V

πl
M ,

where r⋆
h denotes the optimal reward attainable at step h in M . The goal of designing a

reinforcement learning algorithm is to minimise regret over some set of MDPs, which we
take to be the set of tree-structured MDPs,MT . This can be done either in a frequentist
setting, where we minimise the worst-case regret R̂, or a Bayesian setting, where we are
given a prior measure over MT , PM , and minimise the Bayesian regret BR. These are
defined as in part I:

R̂(L, {πl}) = sup
M∈MT

ER(L, {πl},M) and BR(L, {πl}) = EM∼PM
ER(L, {πl},M).

We focus on the Bayesian setting, assuming a Dirichlet prior over the transition probabil-
ities and a Beta prior over mean rewards. Together with multinomial and Beta likelihood
(with rewards assumed to lie in the set {0, 1}), this forms the true or underlying posterior
for M , which in turn induces a true or underlying posterior for Q⋆

M and, for a given
policy π ∈ Π, for Qπ

M .

For finite MDPs, the lower bound on regret for a k-armed bandit,
√
kT (discussed in

chapter 1), immediately gives a lower bound on frequentist regret of the form
√
|A|T .

Osband and Van Roy (2016) extend this to show that frequentist regret on MT is lower
bounded as

√
H|S||A|T . We have not seen a specific lower bound for the Bayesian

setting considered here, but it too will be of the form poly(H, |S|, |A|)
√
T . The broad

goal for finite MDPs is then to design practical algorithms with regret upper bounded by
a polynomial of the same form. Algorithms achieving this criterion, and in particular
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those polynomial in H, are said to perform deep exploration (Kearns et al., 2002). This
is in contrast with naïve exploration methods, such as selecting actions uniformly, which
lead to regret exponential in H.

The presented lower bound implies a certain hardness for finite MDPs. Substituting in
the appropriate cardinalities for any real-life task, say a computer game, leads to lower
bounds that make the task practically impossible (how many different possible states
and actions does StarCraft II have?); further structure is needed. For the remainder
of this section, we focus on methods for problems that we call tabular—problems that
can be solved, at least in principle, using just pen and paper—and consider only briefly
heuristic extensions to a linear function approximation setting, where we hope for regret
that scales with d, the dimension of some state-action embedding, independently of |S|
and |A|. In the next section, we will consider neural network function approximation.

6.2.2 Algorithm design principles

We now outline optimism and posterior sampling, two standard approaches for tackling
online reinforcement learning problems. The first involves the construction of upper
confidence bounds much like those in part I, and is usually seen in the context of
frequentist regret. The second, posterior sampling, is more often introduced in the
Bayesian setting. However, both can be used and analysed in either setting.

Optimism Optimistic methods rely on the construction of time-uniform upper confid-
ence bounds for the state-action value functions, a sequence {Ul} with each Ul mapping
S ×A 7→ R such that for some given δ ∈ (0, 1) there exists an event E with P(E) ≥ 1− δ
on which Ul ≥ Q⋆

M for all l ∈ [L]. Then, for each episode l, we take πl ∈ GUl, and incur
regret bounded as

ER(L, {πl},M) ≤
∑
l<L

E
[
V⋆

M −max
a∈A

Ul(S0, a)︸ ︷︷ ︸
∆l

opt(S0)

]
+ E

[
max
b∈A

Ul(S0, b)− Vπl
M︸ ︷︷ ︸

∆l
conc(S0)

]
.

on MDP M ∈MT . Examining the two terms:

1. E∆l
opt(S0) is an optimism term. By construction, E[∆l

opt | E ] ≤ 0 for all l < L.

2. E∆l
conc(S0) is the difference between the optimistic estimate of the value of the

policy πl, E maxb∈A Ul(S0, b) and its true value Vπl
M .
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Combining the two, and bounding regret on EC linearly,

E(L, {πl},M) ≤ δLH + (1− δ)
∑
l<L

E
[
∆l

conc(S0) | E
]
,

and it remains to choose a suitable δ (as a function of L and H). With that, if we
can show that E[maxb∈A Ul(S0, b) | E ] → V⋆

M as l → ∞, then E[Vπl
M | E ] → V⋆

M and
E[∆l

conc(S0) | E ]→ 0 on E as well; that is, if our upper confidence bounds are consistent
for the optimal value function, we recover sublinear regret.

Optimism thus converts the problem of online reinforcement learning to that of computing
tight constant-probability optimistic estimates of the optimal value function. It is at the
core of many provably efficient reinforcement learning algorithms, for example Kearns
et al. (2002), Brafman et al. (2002), Strehl et al. (2006) and Dann et al. (2017), and
gives a near-minimax-optimal algorithm for the set of finite MDPs under frequentist
regret (Azar et al., 2017). Optimistic algorithms can be either model-based, maintaining
a confidence set for the MDP M and maximising value over that set, or model-free,
working directly with upper confidence bounds for Q-functions.

Posterior sampling A Bayesian alternative to optimism, posterior sampling (PS)
maintains a posterior over MDPs and uses a sequence of policies greedy with respect
to samples from this posterior. We formalise exact posterior sampling in episodic
reinforcement learning as follows. At the start of the lth episode, we compute a posterior
over M , P l

M = P(M | HlH), starting with P 0
M = PM , the prior. We then sample Ml ∼ P l

M

and take a πl ∈ GV ⋆
Ml

. For that construction,

BR(L, {πl}) =
L−1∑
l=0

EV⋆
M − V

πl
Ml︸ ︷︷ ︸

∆l
opt

+EVπl
Ml
− Vπl

M︸ ︷︷ ︸
∆l

conc

,

where the expectations are over M and Ml. Now:

1. E∆l
opt = 0 for all l ∈ [L]. To see this, note that Vπl

Ml
= V⋆

Ml
and let f : M 7→ R be

the function f : M 7→ V⋆
M . By the tower property,

E∆l
opt = EE[V⋆

M − V⋆
Ml
|HlH ] = E [E[f(M)|HlH ]− E[f(Ml)|HlH ]] .

The distribution of f(M)|HlH is then the pushforward by f of the true posterior
for M , and of f(Ml)|HlH the pushforward by f of P l

M . In the exact setting, these
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two conditional measures are equal for all l, giving the claim.

2. ∆l
conc is the difference in the value of πl in Ml and M . A similar tower property

expansion combined with a continuity argument shows that if the posterior P l
M

concentrates suitably as l→∞, then E∆l
conc → 0 in the same limit.

Combining these, we have BR(L, {πl}) ≤
∑

l<L E∆l
conc, and it remains to quantify the

rate of convergence. Under standard conjugate exponential family priors and likelihoods
for the transition dynamics and mean rewards, this is simple.

This exact posterior sampling algorithm and its analysis was introduced by Osband,
D. Russo et al. (2013) as Posterior Sampling for Reinforcement Learning (PSRL). The
authors have shown PSRL to be very effective in practice on tabular MDPs. Prior to this,
posterior sampling has been used as a heuristic in a bandit-like setting by Thompson
(1933). Therein, posterior sampling is introduced as the procedure of selecting arms
according to the posterior probability that they are optimal. This is entirely to the
procedure described here of sampling an environment from the posterior and playing an
arm optimal in that environment.

6.2.3 Randomised value functions and stochastic optimism

Randomised value functions (RVF, Osband, Van Roy and Wen, 2016) is a framework for
model-free approximate posterior sampling where, rather than computing a posterior
over MDPs, we maintain an approximate posterior distribution P l

Q over value functions.
Then, at the start of the lth episode, an RVF agent samples a plausible value function
Ql ∼ P l

Q and follows a policy πl ∈ GQl.

To design an RVF method, we need to define a construction for P l
Q. We call this

the Q-function model. In choosing this construction, we look for two qualities: that the
posterior is easy to update and sample from, and that the induced distribution over
the policies {πl} leads to low regret. The first is a matter of computational complexity,
and needs to be assessed on a per-algorithm basis. The latter can be analysed using
the framework of stochastic optimism. Here, we ask that:

1. P l
Q is stochastically optimistic for the distribution of Q⋆

M , in that for Ql ∼ P l
Q,

E
[
max
b∈A

Q⋆
M(s, b)−max

a∈A
Ql(s, a)

]
≤ 0 (∀s ∈ S, ∀l ∈ [L]).
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2. Ql converges to Q⋆
M in a suitable sense as l→∞.

With these two conditions, we can use analysis much like that for exact posterior sampling
to bound the regret of RVF methods. It will be useful to observe that stochastic optimism
is transitive. When designing a new RVF algorithm for a setting considered by an existing
RVF method, it suffices to prove that the new algorithm is stochastically optimistic for
the existing method. This is often significantly easier.

6.2.4 Randomised least squares value iteration

Randomised Least Squares Value Iteration (RLSVI) is the original RVF algorithm,
proposed and analysed in the Bayesian setting by Osband, Van Roy and Wen, 2016.
Zanette et al. (2020) have since extended its analysis to a frequentist setting. We examine
the algorithm from the Bayesian perspective, where the crux of the technical analysis is
in showing Gaussian-Dirichlet stochastic optimism: that a Gaussian distribution with
a sufficiently high mean and variance is stochastically optimistic for a given Dirichlet
distribution (recall that Q⋆

M is a Dirichlet random variable under our assumptions). We
take this stochastic optimism result for granted and focus on the RLSVI Q-function
model.

In each episode l ∈ [L], RLSVI partitions the plausible Q-function Ql into {Ql|h : h ∈ [H]},
where Ql|h : Sh ×A 7→ R is the restriction of Ql to Sh ×A, and samples Ql|h(s, a) for
(s, a) ∈ Sh ×A conditionally on Ql|h+1, with the boundary condition Ql|H(s, a) = 0 for
all (s, a) ∈ S0 ×A. The conditional distribution of Q|h(s, a) given Q|h+1 and the history
HlH is modelled by conjugate Gaussian linear regression with prior mean m ∈ R, prior
variance α > 0, likelihood variance β > 0 and ‘observations’ of the form

{RiH+h + γmax
b∈A

Ql|h+1(SiH+h+1, b) : SiH+h = s, AiH+h = a, i ∈ [l]}.

The resulting conditional distribution for each step h ∈ [H] at the start of episode l is
then N (µh, diag(νh)) where, writing χt(s, a) = 1{St = s, At = a},

µh(s, a) = νh(s, a)
α−1m+ β−1∑

i<l

χiH+h(s, a)
(
RiH+h + γmax

b∈A
Ql|h+1(SiH+h+1, b)

)
(6.2)

and νh(s, a) =
(
α−1 + β−1nlH(s, a)

)−1
with nlH(s, a) =

∑
τ<lH

χτ (s, a)
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for all (s, a) ∈ Sh×A. Choosing m,α, β appropriately, each conditional distribution Ql|h
given Ql|h+1 can be made stochastically optimistic for the true conditional distribution
Q⋆

M |h given Q⋆
M |h+1 (using Gaussian-Dirichlet stochastic optimism). A recursive argument

then shows that the resulting sample Ql is stochastically optimistic for Q⋆
M . Note that

while each conditional is Gaussian, P l
Q is not jointly Gaussian.

Osband, Van Roy and Wen (2016) generalise RLSVI to a linear function approximation
setting by takingQ|h(s, a) = ⟨wh, φ(s, a)⟩ for some given embedding function φ : S ×A 7→
Rd and weights {wh ∈ Rd}. Each conditional distribution is then obtained by performing
conjugate linear Gaussian regression for the corresponding weights (the tabular version
may be recovered by taking φ(s, a) = e(s,a), a one-hot encoding of S ×A). The authors
present experiments that suggest this heuristic extension leads to empirical regret that
scales as poly(d) on linearly-embedded tabular MDPs. Since then, Jin et al. (2020)
have proven a bound of that form for a similar algorithm based on linear function
approximation with OFUL confidence intervals and least squares value iteration under
certain linearity assumptions. We will take a similar approach in our work to that of
the authors of RLSVI: we will analyse a tabular version of our algorithm and extend it
heuristically to a linear setting.

6.3 Deep reinforcement learning

We now turn to deep reinforcement learning, the empirically-driven combination of
reinforcement learning with neural network function approximation. In this section, we
outline the key components of the seminal deep reinforcement learning algorithm, Deep
Q-Networks (DQN, Mnih et al., 2015), and some now-standard tweaks. We also look at
the Atari Learning Environment and the neural network architecture used to tackle it.

6.3.1 The empirical MDP model

Throughout our exposition we will find it useful to refer to empirical MDP models:
those resulting from using simple empirical averages of the observed quantities. Writing
nt(s, a) = ∑

τ<t 1{Sτ = s, Aτ = a} and taking 1
nt(s,a) = 0 when nt(s, a) = 0, we refer to

R̄ mapping S ×A to a set of measures on R as an empirical reward model if

ER̄(s, a) = 1
nt(s, a)

∑
τ<t

Rτ1{Sτ = s, Aτ = a}
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and to P̄ mapping S ×A to the set of measures on S as an empirical transition model if

EP̄(s, a)(s′) = 1
nt(s, a)

∑
τ<t

1{Sτ = s, Aτ = a, Sτ+1 = s′}.

We denote these expectations as r̄ ∈ R|S||A| and P̄ ∈ R|S||A|×|S| respectively. Also, for a
policy π ∈ Π, we will write P̄ π ∈ R|S||A|×|S||A| for the state-action transition matrix given
elementwise by

[P̄ π](s,a),(s′,a′) = π(s′)(a′)
nt(s, a)

∑
τ<t

1{Sτ = s, Aτ = a, Sτ+1 = s′}.

We refer to M̄ = (S,A, R̄, P̄ , P̄0, H, γ) as an empirical MDP model, with the empirical
initial state distribution P̄0 defined accordingly.

6.3.2 Generalised policy iteration

The deep reinforcement learning algorithms we consider are built around gradient-based
generalised policy iteration planning methods. A classic algorithm that has been adapted
for this purpose is Q-learning (Watkins, 1989; Watkins and Dayan, 1992). Q-learning
begins by initialising some Q-function Q0 ∈ RS×A, for example Q0(s, a) = 0 for all
(s, a) ∈ S ×A. For each time-step thereafter, it constructs Qt from Qt−1 and the tuple
(St−1, At−1, Rt−1, St) by computing the target

Yt = Rt−1 + γmax
b∈A

Qt(St, b),

and setting
Qt(At−1, St−1) = (1− α)Qt−1(At−1, St−1) + αYt

for α ∈ (0, 1) a learning rate and Qt(s, a) = Qt−1(s, a) for all (s, a) ̸= (St−1, At−1).
Q-learning can be interpreted as computing the Q-function for a weighted empirical
MDP M̄ . Under mild assumptions on the stream of observations and the learning rate,
the Q-learning estimator Qt converges to Q⋆

M as t→∞.

Q-learning is an example of an off-policy reinforcement learning algorithm, in that the
Q-function estimate does not explicitly depend on the interaction policy used by the
algorithm. If instead we use the targets

Yt = Rt−1 + γQt−1(St, At),
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we obtain the SARSA algorithm, so named for the (St−1, At−1, Rt−1, St, At) quintuple
used therein (Rummery et al., 1994). This is an on-policy algorithm: the resulting
Q-function depends on the policy used for interaction. Taking the interaction policy to
be greedy with respect to Qt at each step, SARSA and Q-learning become equivalent.

Another related algorithm is Expected SARSA (ESARSA, Sutton, Barto et al., 1998).
Here, together with a tuple (St−1, At−1, Rt−1, St), we take policy πt and use the targets

Yt = Rt−1 + γ⟨πt(St), Qt(St, ·)⟩.

When πt is the interaction policy, such that At ∼ πt(St), ESARSA is on-policy and
the targets used are equal in expectation to those of SARSA (but lower variance).
With a general policies, ESARSA is an off-policy method. When the policy is fixed
throughout, that is πt = π for some π ∈ Π and all t < T , ESARSA computes Qπ

M̃
for

a weighted empirical MDP M̃ . Convergence of Qt to Qπ
M is then guaranteed under

standard conditions on π, P0 and α (Van Seijen et al., 2009).

6.3.3 Neural network function approximation

We now look at deep reinforcement learning: the combination of reinforcement learning
with neural network function approximation. The core idea behind deep (model-free)
reinforcement learning, and in particular Deep Q-Networks (DQN) models, is to take
Qt(s, a) = Q(s, a; θt), where Q is a neural network and θt are the parameters of that
neural network, compute the standard Q-learning targets Yt, and use gradients of the
Bellman loss

gt = ∂θt−1(Q(s, a; θt−1)− Yt)2

with a gradient-based optimisation method to obtain updated parameters θt. This basic
idea is augmented with several heuristics to improve the performance of the agent.

First, Deep Q-Networks introduces a replay buffer (Lin, 1992), which stores the last
τ -many observations for some τ ∈ N and is used to compute an averaged gradient

ḡt = 1
B

B∑
b=1

gi(b)

for a batch size B and for i(b) a uniform sample from {t− τ, . . . , t}. This acts to reduce
the variance of the gradients and decorrelate the updates, making training more stable—if
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were we to use sequential observations for updates, the strong autocorrelation between
the Q-function at consecutive time steps may lead to instability in the neural network
training procedure. We can interpret the replay buffer to be a biased non-parametric
empirical model of the rewards and transition dynamics.

Another feature introduced in the DQN algorithm is the use of delayed weights in the
computation of the targets. That is, the targets Yt are computed using weights θ′

t, a copy
of θt updated periodically (say every τ steps). That is,

Yt = Rt−1 + max
a∈A

Q(St, a; θ′
t−1).

This acts to slow down and stabilise the learning of the neural network weights. A further
now-standard modification of the targets is given by double Q-learning (Van Hasselt
et al., 2016), where the weights θt−1 are used to estimate the optimal action but the
delayed weights θ′

t−1 to compute its value. The targets are then given by

Yt = Rt−1 +Q(St, a; θ′
t−1) where a ∈ arg max

b∈A
Q(St, b; θt−1).

Double Q-learning tackles the interaction of the bias of Q-learning and the neural
network training dynamics. Specifically, when Qt = Q(·, ·; θt) is seen as a random variable
distributed conditionally on Ht, standard Q-learning, while consistent, is positively biased
for the underlying Q-function, which can cause the neural network Q-function estimate
to diverge. Using delayed weights θ′

t acts to reduce the bias. Indeed, if θ′
t were obtained

from an independent stream of data H′
t, double Q-learning would have negative bias.

In this thesis, we will not explicitly differentiate between θt and θ′
t; delayed targets may

be combined with any of the methods as needed. Furthermore, when working with deep
reinforcement learning algorithms, we will express the Q-function and other cumulants
as infinite sums of the form E[∑∞

τ=0 γ
τRτ | S0 = s, A0 = a]. This is entirely equivalent to

the discounted episodic view, in that we simply take Rτ = 0 for all τ > H within the
expectation. Practically, this is achieved by setting YlH = 0 for all l ∈ [L].

6.3.4 Exploration within deep reinforcement learning

To construct a deep reinforcement learning algorithm, it remains to specify how the
agent interacts with the environment. This is referred to as an exploration method. The
standard exploration method within deep reinforcement learning is epsilon-greedy, where
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for some choice of εt ∈ (0, 1), we take

At ∈ arg max
a∈A

Q(St, a; θt−1) with probability 1− εt,

and At ∼ Uniform(A) otherwise (used in Mnih et al., 2015). Epsilon-greedy is simple,
and for εt bounded away from zero for all t < T , it satisfies the conditions required
for the convergence of Q-learning and ESARSA (Van Seijen et al., 2009). However,
epsilon-greedy is a naïve exploration method. It does not perform deep exploration.

6.3.5 Network architecture

The network architecture used in deep reinforcement learning is problem-specific. Here,
we describe the architecture used by Mnih et al. (2015) to tackle the Atari Learning
Environment (ALE). Our work will use an extension of this standard architecture. First,
however, we briefly describe the ALE interface.

The Atari Learning Environment takes integer input that represents an action, and returns
an RBG image screen observation and a scalar reward. The following preprocessing is
taken as standard:

• The image is scaled down and converted to grayscale, resulting in an 84× 84 uint8
array. The larger resolution and colour are unnecessary to solve the problems, and
this greatly reduces the computational cost of training.

• Only every fourth frame is used, with a maximum taken pixel-wise over the skipped
frames and the same action repeated for each. The granularity of selecting actions
every frame is too high for standard deep reinforcement learning algorithms.

• Sequences of four consecutive un-skipped frames are stacked together to give the
state. This is because the images alone are insufficient to give a Markov state as,
for example, a single image may not capture movement.

With that, the architecture of Mnih et al. (2015) consists of:

• A body element takes the 4× 84× 84 stacked frames, which we take to be a state
s ∈ S, puts these through a three-layer convolutional network, flattens the output
and applies a densely connected layer followed by a ReLU activation. This gives
an embedding φ(s) ∈ Rd.

• A head, a set of weight vectors w1, . . . , w|A| ∈ Rd, giving the Q-value estimates as
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linear combinations Q(s, a; θt) = ⟨φ(s), wa⟩.

Here, the parameters θt are the weights {wa} and the trainable parameters of the neural
network φ. Moving forward, we will suppress the dependence of neural network Q-
function estimates on θt within our notation and write instead Qt(s, a), or just Q(s, a)
when the relevant time-step is clear from context.

6.4 Discussion

We introduced reinforcement learning from two perspectives:

1. One focused on regret, much in line with part I of this thesis, along with solutions
based on optimism and posterior sampling. Under this perspective, reinforcement
learning is about an online trade-off between exploration and exploitation.

2. A practical perspective, focused on the combination of planning, based on general-
ised policy iteration, and the training of neural networks. This perspective places
little importance on the online interaction aspect of reinforcement learning.

The uneasy fit between problem and solution apparent within the practical perspective
has led to most applied reinforcement learning work to be constrained to areas where
data is cheap, for example computer games (where interactions require only minimal
computation) and biology or chemistry problems (where data is generated synthetically).

In the reminder of this thesis, we look to bridge the gap between the two perspectives,
using theoretical insights to develop strong deep reinforcement learning algorithms.
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Chapter 7

Feature-linear reinforcement learning
algorithms

We now look at a number of methods that combine optimism or posterior sampling
with linear function approximation and evaluate these on the Deep Sea benchmark
(Osband, Aslanides et al., 2018), a set of MDPs with sparse rewards that test for
deep exploration. Where relevant, we discuss any challenges in scaling these methods
to the deep reinforcement learning setting.

7.1 The benchmark: Deep Sea MDPs

The Deep Sea benchmark is a set of tree-structured tabular problems with sparse reward,
described by Osband, Aslanides et al. (2018) as:

The environments are indexed by problem scale H ∈ N and action mask
W ∼ Bernoulli(0.5)H×H , with S = {0, 1}H×H and A = {0, 1}. The agent
begins each episode in the upper left-most corner of a H by H grid and
deterministically falls one row per time step. The state encodes the agent’s
row and column as a one-hot vector. The actions {0, 1} move the agent left
or right depending on the action mask W at state s ∈ S, which remains fixed
throughout interaction. The agent incurs a cost of 0.01/H for moving right
in all states except for the right-most, in which the reward is 1. The reward
for action left is always zero. An episode ends after H time steps so that the
optimal policy is to move right each step and receive a total return of 0.99;
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all other policies receive zero or negative return.

We consider an agent to have solved a size H deep sea problem when its average per-
episode regret drops below 0.9. We present some initial results on Deep Sea in fig. 7.1.
The three plots therein depict:

• Top. The number of episodes taken by an agent using a uniformly random explora-
tion policy to observe the first positive reward on each problem of size. The left
hand side dotted line shows the analytic expected time for the first reward to be
observed; this grows exponentially with H.

• Middle. The number of episodes for RLSVI to solve a Deep Sea MDP versus
the problem size (henceforth the performance). The right hand side dotted line
represents an empirical polynomial fit to the performance of RLSVI.

• Bottom. The performance of Q-learning with an epsilon greedy policy. Only crosses
appear here: this naïve method failed to solve any of the problems within 2000
episodes. This is due to the small misleading negative rewards, which cause the
algorithm to become stuck in a locally optimal left-always policy.

We use the reference implementation of the Deep Sea benchmark included in the bsuite
benchmark suite (Osband, Doron et al., 2019). For all experiments, linear model
parameters are set to α = 100 and β = 0.01. These were found to be optimal in a coarse
grid search for the upcoming ‘optimism via reward bonuses’ method; other methods
tested were significantly less sensitive to choice of these parameters. Where available,
the prior mean parameter m is set to zero. We discuss this choice in section 7.4, as part
of a broader commentary on experimental methodology within reinforcement learning.

7.2 Intrinsic motivation methods

Intrinsic motivation is an approach to exploration based on rewarding the agent for
visiting novel states (Schmidhuber, 1991). While frequently introduced through the lens
of neuroscience or psychology, with novel behaviour sought out of boredom, we will
view these as a methods for achieving optimism. In this section, we describe a generic
implementation of a reward bonus–based agent first, and then look at an improvement on
that methodology: the Uncertainty Bellman Equation (UBE, O’Donoghue et al., 2018).
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Figure 7.1: Deep Sea performance with a single seed for each method. Points denote
number of episodes to first reward (top)/solution (middle, bottom) for each problem
size; crosses denote runs that failed to find positive reward/solve problem within 2000
episodes. Dotted lines depict analytic time to first reward for a uniform policy and an
empirical fit to the performance of RLSVI respectively.
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7.2.1 Optimism via reward bonuses

Optimism via reward bonuses is a broad category that captures many intrinsic motivation
methods where an agent performs planning on a combination of the extrinsic reward,
given by the MDP, and an intrinsic reward, defined as part of the algorithm. That is,
the agent has a secondary intrinsic reward stream R̃t = r̃(St, At) and acts greedily with
respect to

Uπ(s, a) = Qπ(s, a) + E
[ ∞∑

t=0
γtr̃(St, At) | S0 = s, A0 = a

]
,

where the expectation is with respect to transitions given by an empirical transition
model, the extrinsic and intrinsic rewards respectively, and a policy π. Here, in an
attempt to establish optimism for Q⋆

M , we take π to be a policy that maximising Uπ(s, a)
across S ×A; the resulting Uπ can be computed using, for example, value iteration. In
practice, Q-learning is often used for this purpose.

Methods in this category differ in the choice of the intrinsic reward signal. Within
tabular problems, the choice of the intrinsic rewards is straightforward. We take r̃(s, a) =
ν(s, a)1/2, for ν a local variance of the form

ν(s, a) = (α−1 + β−1nt(s, a))−1 for nt(s, a) =
∑
τ<t

1{St = s, At = a},

and parameters α, β > 0.1 We can extend this heuristically to the linear function
approximation setting, where the Q-function is modelled as linear in some features
φ : S ×A 7→ Rd, by taking

ν(s, a) = [Σ](s,a),(s,a) for Σ =
(
α−1I + β−1∑

τ<t

φ(Sτ , Aτ )φ(Sτ , Aτ )T

)−1

.

When φ(s, a) = e(s,a), a one-hot encoding of S ×A, the two local variances are equivalent.

We present the performance of the tabular version of this algorithm in Figure 7.2 (top).
While the method significantly outperforms uniform random exploration, it does not
perform nearly as well as RLSVI. This is in line with results shown in the appendix of
Osband, Van Roy and Wen (2016), which compare RLSVI with a reward bonus–based
method with a different but similar intrinsic reward signal on a related set of problems.

1We ignore polylogarithmic terms throughout part II.
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Figure 7.2: Deep Sea performance with a single seed for each method. Points denote
number of episodes to solution for each problem size; crosses denote runs that failed to
solve problem within 2000 episodes. Dotted lines depict analytic time to first reward for
a uniform policy and an empirical fit to the performance of RLSVI respectively.
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7.2.2 The Uncertainty Bellman Equation

The Uncertainty Bellman Equation (UBE, O’Donoghue et al., 2018) combined with
UCB-style methodology explores using a policy greedy with respect to

Uπ(s, a) = Qπ(s, a) +
√
bπ(s, a) for bπ(s, a) = E

[ ∞∑
τ=0

γ2τν(Sτ , Aτ ) | S0 = s, A0 = a

]
,

where the local variance ν and the policy π are taken as before. The difference between
the Uπ given by reward bonuses and by UBE is a change of the order of the square root
operation with the summation and the expectation. O’Donoghue et al. (2018) justify
this exchange of operations formally using the conditional Jensen’s inequality.

To appreciate the consequences of the change introduced in UBE, consider the following
two ways of establishing a constant probability bound for the sum of R0, . . . , RH−1, each
an independent standard normal random variable, using a Cramér-Chernoff bound:

1. For all h < H, with probability 1− δ
H

, Rh ≤
√

2 log H
δ

. Thus, by the union bound,
with probability no less than 1− δ, ∑h<H Rh ≤ H

√
2 log H

δ
.

2. On the other hand, since ∑h<H Rh is itself distributed asN (0, H), we can bound the
sum directly. We obtain that with probability at least 1−δ, ∑h<H Rh ≤

√
2H log 1

δ
.

These correspond in turn to the standard bonuses method and UBE when these are
applied to a tree-structured MDP with H states. The bound resulting from the UBE-type
approach is on the order of ι

√
H tighter. Empirical evaluation of UBE with UCB bonuses

on Deep Sea, shown in fig. 7.2 (middle), shows UBE performing better in practice.

However, when introducing UBE, O’Donoghue et al. (2018) combine the model not with
UCB-style exploration but with posterior sampling. The resulting algorithm is an RVF-
type method with P l

Q = N
(
Qπ, diag(

√
bπ)
)

where π is taken to be a policy maximising
Qπ (the Q-function derived from extrinsic rewards only). For each episode l ∈ [L], the
agent then interacts using a policy πl ∈ GQ for Q ∼ P l

Q. As shown in fig. 7.2 (bottom),
this procedure fails to outperform uniform random exploration. This is unsurprising,
considering that this UBE RVF method models the Q-function as independent across
different state-action pairs. Indeed:

49 Theorem. Suppose |A| > 1 and let PQ be a factorised distribution. That is, for
Q ∼ PQ, Q(s, a) and Q(s′, a′) are independent for all (s, a) ̸= (s′, a′). Assume further
that for each s ∈ S, the marginal distributions of {Q(s, a) : a ∈ A} are symmetric around
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some cs ∈ R. Then the probability of executing any given sequence of H actions under
π ∈ GQ is at most 2−H .

This result shows UBE with posterior sampling will incur regret exponential in H on
a version of Deep Sea where all negative rewards are set to zero (this modification leads
to the symmetry required in the theorem). The inclusion of negative rewards only makes
the performance of UBE with posterior sampling worse.

Proof of theorem 49. For state s ∈ S and action a ∈ A, consider the events

E =
⋂

b∈A\{a}
{Q : Q(s, a) > Q(s, b)} and Ẽ =

⋂
b∈A\{a}

{Q : Q(s, a) < Q(s, b)}.

By symmetry, P(E) = P(Ẽ). Moreover, since E and Ẽ are disjoint, P(E) + P(Ẽ) ≤ 1.
Hence P(E) ≤ 1

2 . Now note E is the event where a given action a is selected in a
state s. By assumption, Q(s, a) and Q(s′, a′) are independent for (s, a) ̸= (s′, a′). Thus
the probability of executing a sequence of H specific actions is at best (that is, under
deterministic transitions) the product of the probabilities of executing a single desired
action, and so upper bounded by 2−H .

7.3 Bayesian-motivated approaches

Bayesian modelling offers an alternative perspective on the design of reinforcement
learning algorithms, and has a history dating back to at least Dearden et al. (1998) and
Strens (2000). Here, we look at the classic GP-SARSA algorithm (Engel et al., 2005),
and Bayesian Deep Q-Networks (BDQN, Azizzadenesheli et al., 2018), an attempt at
combining Bayesian modelling with the DQN neural network function approximation
architecture. We end on a discussion of a broader class of methods that (unsuccessfully)
combine Bayesian models with DQN, which includes BDQN and other popular heuristics.

7.3.1 GP-SARSA, an explicit Bayesian approach

GP-SARSA combines a Gaussian process prior for the Q-function with a Gaussian
likelihood for rewards and SARSA-style targets to give an on-policy Q-function model
that can be used with either posterior sampling or optimism (Engel et al., 2005). Here, we
use the weight-space perspective on Gaussian process regression (discussed in chapter 2)
to present a finite-dimensional feature-linear version of GP-SARSA. We also extend
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this model to an off-policy setting, deriving a GP-ESARSA method, and examine the
scalability issues that emerge.

The GP-SARSA model assumes that Q(s, a) = ⟨w,φ(s, a)⟩ for a given embedding function
φ : S ×A 7→ Rd and weights w ∈ Rd with a prior N (0, αI), α > 0, on w. It then models
the observed rewards as generated by the process

Rh =

Q(Sh, Ah)− γQ(Sh+1, Ah+1) + εh h+ 1 < H

Q(Sh, Ah) + εh otherwise,

where each εh is an independently and identically distributed N (0, β) random variable
for some β > 0. Writing ψτ = φ(Sτ , Aτ )− γτφ(Sτ+1, Aτ+1), where γτ ∈ γ, 0 takes value
0 on terminal steps, we have that Rτ = ⟨w,ψτ ⟩+ ετ . We can thus interpret GP-SARSA
as a conjugate linear Gaussian model for the observed rewards, and so P l

w = N (µw,Σw)
with

µw = Σ−1
w

∑
τ<lH

ψτRτ and Σw =
β−1 ∑

τ<lH

ψτψ
T
τ + α−1I

−1

.

Notably, we can compute P l+1
w from P l

w using only order d2 operations, independently
of both t and |S||A|. GP-SARSA is thus scalable. P l

w in turn induces a posterior over
Q-functions, P l

Q = N (µQ,ΣQ) where

µQ(s, a) = ⟨µw, φ(s, a)⟩ and [ΣQ](s,a),(s′,a′) = ⟨φ(s, a)φ(s′, a′)T ,Σw⟩F ,

with point-wise evaluation costs that scale with d only.

On the Deep Sea benchmark, GP-SARSA with RVF exploration significantly outperforms
uniform random exploration, but does not match the performance of RLSVI (fig. 7.3,
top). This result is to be expected, given the previously outlined theoretical framework
for RVF methods. Since GP-SARSA models Qπ′

M for π′ the implicit policy induced by
the combination of RVF exploration and SARSA targets, and not Q⋆

M , the optimal value
function, it fails to be stochastically optimistic for Q⋆

M .

We may attempt to fix GP-SARSA by extending it to compute a posterior for any
chosen policy π ∈ Π, taking Rτ = ⟨w,ψπ

τ ⟩+ ετ with ετ as before and ψπ
τ = φ(Sτ , Aτ )−

γτ ⟨π(Sτ+1), φ(Sτ+1, ·)⟩, and applying some form of policy iteration to compute a posterior
over plausible optimal value functions. The resulting P l

w is then of the same form as in
GP-SARSA, but with ψπ

τ replacing ψτ . We refer to this as GP-ESARSA.
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However, policy evaluation in GP-ESARSA is too expensive to be useful. For a new
π, each element ψπ

0 , . . . , ψ
π
lH−1 summed over within the covariance needs to be updated,

leading to an order t cost. We can avoid this scaling with t by working directly with the
induced posterior over Q-functions, which we denote here as P l

Qπ . Straightforward linear
algebra shows that this is of the form N (µπ

Q,Σπ
Q) for

µπ
Q = Σ−1

Q (I − γP̄ π)T ΦTR and Σπ
Q =

[
α−1I + β−1(I − γP̄ π)T ΦT Φπ(I − γP̄ π)

]−1
,

(7.1)
where R = [R0, . . . , RlH−1]T , Φ = [φ(S0, A0), . . . , φ(SlH−1, AlH−1)] and P̄ π is the empirical
state-action transition matrix for the policy π, as defined in section 6.3.1. But this
alternative approach has a computational complexity that grows with |S × A|, and so
still does not scale beyond the tabular setting.

7.3.2 Bayesian Deep Q-Networks

Bayesian Deep Q-Networks (BDQN, Azizzadenesheli et al., 2018) combines approximate
conjugate Gaussian linear regression with Deep Q-Networks to give a neural-linear Q-
function model. While it is not a good model (see results in fig. 7.3, middle & bottom),
analysing it will provide useful insights for our later work, and reveal weaknesses common
amongst other ‘pseudo-Bayesian’ deep reinforcement learning methods.

BDQN models the Q-function as Q(s, a) = ⟨wa, φ(s)⟩ where φ : S 7→ Rd is a neural
network (canonically the body of a DQN network) and w1, . . . , w|A| ∈ Rd are independent
random vectors with wa ∼ N (µa,Σa) for each a ∈ A, with

Σa =
(
α−1I + β−1∑

τ<t

1{Aτ = a}φ(Sτ )φ(Sτ )T

)−1

for parameters α, β > 0 and with µa given by minimising the squared Bellman loss

L(s, a, r, s′) = (⟨wa, φ(s)⟩ − r − γY (s′))2 with Y (s′) = max
b∈A
⟨µb, φ(s′)⟩

with respect to {µa} and the parameters of φ, in expectation over observations (s, a, r, s′)
sampled from a replay buffer and {wa} sampled according to their respective models.
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Figure 7.3: Deep Sea performance with a single seed for each method. Points denote
number of episodes to solution for each problem size; crosses denote runs that failed to
solve problem within 2000 episodes. Dotted lines depict analytic time to first reward for
a uniform policy and an empirical fit to the performance of RLSVI respectively.
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The resulting posterior is PQ = N (µQ,ΣQ) with

µQ(s, a) = ⟨µa, φ(s)⟩ and [ΣQ](s,a),(s′,a′) =

⟨φ(s)φ(s′)T ,Σa⟩F , a = a′

0, otherwise,

and the overall model can be described as approximate conjugate Gaussian regression
for the Q-function performed independently for each action.

We show the performance of BDQN with optimistic exploration and RVF-style posterior
sampling in fig. 7.3 (middle & bottom respectively). Both fail to solve any of the Deep Sea
MDP sizes tested. This result holds empirically irrespective of the network architecture
or initialisation used for φ, and of any network or model hyperparameters. We now
examine why.

Consider first using the BDQN model structure with the embedding function fixed to be
the one-hot embedding φ(s) = es, combined with:

• Posterior sampling. The resulting PQ is diagonal, and so Q(s, a) and Q(s′, a′) are
independent for (s, a) ̸= (s′, a′). The Q-function posterior is also symmetric and
centred (ignoring the effects of the small negative rewards), and so an application
of theorem 49 on page 136 gives regret exponential in H.

• Optimism. Here, we use a policy greedy with respect to

U(s, a) = µQ(s, a) + [ΣQ]1/2
(s,a),(s,a).

On Deep Sea problems, prior to finding the positive reward and ignoring negative
rewards, µQ(s, a) = 0 for all (s, a) ∈ S ×A. Thus the algorithm acts greedily
with respect to [ΣQ]1/2

(s,a),(s,a), which with tabular embeddings this is equal to (α−1 +
β−1nt(s, a))−1/2. The agent therefore explores in a quasi-uniform manner, incurring
regret exponential in H.

In both cases, the failure of the algorithm can be understood as a failure to propagate
uncertainty information from each step h to h − 1 within the MDP, for each h < H.
In particular, the optimistic version looks like the standard optimism via reward bonuses
method but where reward bonuses are not summed over the time steps.

Now consider the full BDQN algorithm with a neural network φ : S 7→ R and weights
{µa}, both trained to minimise the given squared Bellman loss. Now:
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• Posterior sampling. Take an MDP with |S| = |A| > 1. Assume each state has
a unique optimal action,2 and denote by a⋆ : S 7→ A the map taking states to
corresponding optimal actions. Then since {wa} are independent random vectors
and each optimal action is unique, Q(s, a⋆(s)) is independent of Q(s, a⋆(s′)) for all
s ̸= s′, and so by theorem 49 the regret incurred is exponential in H. Looking back
at our Deep Sea MDPs, the mask W acts to randomise the assignments between
states and optimal actions, which causes BDQN to fail.

• Optimism. The problem in here is in the loss function. Writing Ỹ (s′, r) = r+γY (s′),
we can decompose expected loss into

EEQ

[
(Q(s, a)− Ỹ (s′, r))2

]
= E[(µQ(s, a)− Ỹ (s′, r))2]︸ ︷︷ ︸

mean term

+ EVarQ(Q(s, a))︸ ︷︷ ︸
variance term

,

where the outer expectations are over (s, a, r, s′). Examining the two resulting
terms: the mean term encourages the posterior mean to match the targets Ỹ (s′, r)—
this is reasonable; the variance term acts to penalise the posterior variance on the
previously observed locations—this is undesirable. With sufficient optimisation,
the variance term causes the exploration bonus for any previously observed state-
action pair to drop to near zero independently of the number of times it had been
observed. Failure on the Deep Sea MDPs follows: once the bonus for action right in
a given state drops below 0.01/H, the algorithm can no longer solve the problem.

Both of these failure modes are fixable. For the first, change the Q-function model so that
Q(s, a) = ⟨w,φ(s, a)⟩ for φ : S ×A 7→ Rd and w ∈ Rd with Pw = N (µw,Σw) for Σw an
appropriately chosen dense matrix. For the second, discard the variance term in the loss.
However, there remains a further issue. Any function µQ that can be realised by either
model—with φ : S 7→ Rd and {µa}, or with φ : S ×A 7→ Rd and a single µw ∈ Rd—can
be realised by infinitely many choices of φ. While many of these choices may lead to a
low average Bellman loss, not all will be suitable for exploration—after all, φ given by
a one-hot encoding can achieve zero ‘mean term’ loss while exploring no better than a
uniformly random policy. The model is under-constrained. In the next chapter, when we
develop Successor Uncertainties, we will take the first two fixes for BDQN as our starting
point. Our main contribution will then be in the introduction of additional structure to
constrain φ, which we show induces effective exploration.

2We say an action a is optimal in state s if there exists a π⋆ ∈ GQ⋆
M such that π⋆(s)(a) > 0.
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7.3.3 Other pseudo-Bayesian deep RL methods

BDQN is one of many methods that combine Bayesian modelling with the DQN framework
in an attempt to improve exploration. For example, Gal (2016) uses the dropout-based
heuristic of Gal and Ghahramani (2016) in the DQN network; Y. Tang et al. (2017)
use ‘powerful variational inference subroutines’ for DQN network parameters under
Gaussianity assumptions; Moerland et al. (2017) use conjugate Gaussian linear regression;
Lipton et al. (2018) use a Bayes-by-Backprop neural network (Blundell et al., 2015);
Touati et al. (2019) use multiplicative flows (Louizos et al., 2017). These pseudo-Bayesian
methods do not lead to deep exploration. The specific pitfalls vary, but they emerge from
the treatment of reinforcement learning as an application of supervised learning, rather
than as a problem that happens to use regression within its solutions. These methods
replace the regression element without considering the broader problem.3

7.4 Deep reinforcement learning that matters

The failure of UBE with posterior sampling and BDQN with both exploration methods
considered raises the question of why these and other similar methods are popular within
the literature. This may be in part due to the way in which deep reinforcement learning
algorithms are evaluated, a topic that has seen much discussion since the publication
of ‘Deep reinforcement learning that matters’ (Henderson et al., 2018). We add to that
conversation with some observations regarding the Deep Sea benchmark and similar
hard-exploration problems, and discuss the ALE benchmark.

Deep Sea We are strong proponents of Deep Sea MDPs and other such tabular edge-
case problems, exemplified by the bsuite benchmarks (Osband, Doron et al., 2019), as a
means of fault-finding for reinforcement learning algorithms. However, both UBE and
BDQN have been tested on hard exploration benchmarks and passed. Why?

First, O’Donoghue et al. (2018) test UBE with optimism on tabular problems, but then
proceed to use UBE with posterior sampling on ALE. It is thus important to ensure that
the model and method tested on the tabular baselines is as close as possible to the one
used on the full problem. In this particular case, posterior sampling is in some sense
harder than optimism, since it relies on the entire covariance matrix and not just its
diagonal entries.

3Some of these have been previously criticised in Osband, Aslanides et al. (2018).
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As an aside, this desire for consistency between tabular and deep implementations explains
our decision to set m = 0 for our experiments. While theoretical results for RLSVI
require m = 1, the method solves the Deep Sea benchmark without this mean optimism.
Meanwhile, methods that combine the RVF framework with deep reinforcement learning
frequently use a standard Q-network for the mean value prediction, as in UBE, and have
no mechanism for optimism therein. Since our focus is to develop algorithms that work
effectively in the deep learning setting, we avoid relying on mechanisms that do not
translate directly to that setting.

Second, results showing BDQN and other pseudo-Bayesian DQN methods solve hard
tabular exploration tasks (as in, for example, figure 1 of Touati et al., 2019) almost
invariably involve poorly designed or implemented benchmarks. In the cited figure, for
example, the authors most likely fail to randomise the index of the optimal action in
each state (that is, did not include the matrix W , as specified in the description of the
Deep Sea MDPs). Not randomising optimal actions within tabular benchmarks (as also
done in, for example, Osband, Blundell et al., 2016; Plappert et al., 2018) can lead to
rogue solutions, exemplified by the following:

50 Theorem. Let Q(s, a) = ⟨wa, φ(s)⟩ with φ(s) = ϕ(Ues) ∈ Rd for ϕ a strictly positive
activation function (for example sigmoid) applied elementwise and any weights U ∈ Rd×|S|.
Then sampling wa ∼ N (0, αI) for α > 0 independently solves a size H Deep Sea MDP
without randomised optimal actions in L ≤ − log2(1− 2−d)−1 median number of episodes.

Thus, a one-layer BDQN model with a single neuron followed by a sigmoid activation
function solves a size H Deep Sea MDP without randomised optimal actions in a median
time of one episode, independently of H. This highlights the importance of sanity-
checking results—for example, establishing a priori the performance we might expect
from a strong method, like RLSVI, and asking questions if the proposed method exceeds
it by a large margin.

Proof of theorem 50. Assume action 0 is optimal in all states and define ∆ .= w0 − w1.
Action 0 is selected in state s ∈ S if Q(s, 0) − Q(s, 1) = ⟨φ(s),∆⟩ > 0. By the strict
positivity of ϕ, the probability that 0 is selected for all s⋆

0, . . . , s
⋆
H−1, the sequence of

states needed to reach the rewarding state, is lower bounded as

P

 ⋂
h<H

{Q̂(s⋆
h, 0) > Q(s⋆

h, 1)}
≥ P(∆ > 0) P

 ⋂
h<H

{⟨φ(s⋆
h),∆⟩ > 0} | ∆ > 0

= P(∆ > 0),
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where ∆ > 0 is to be interpreted elementwise. Since ∆ ∼ N (0, 2αI), P(∆ > 0) = 2−d

for all H ∈ N. The result follows by using the expression for the median of a geometric
distribution.

Atari Learning Environment ALE is a near-inescapable part of benchmarking
general deep reinforcement learning algorithms. We believe, however, that algorithms
should not be benchmarked just on ALE, and indeed that ALE is not a particularly good
benchmark altogether:

• The ALE benchmark is expensive. We estimate that running standard DQN for
the 49 games included in the standard ALE benchmark requires approximately
8,000 GPU hours on an NVIDIA RTX 1080Ti GPU with a 3.2GHz CPU. On the
other hand, the performance of deep reinforcement learning algorithms can vary
greatly between runs and many random seeds are required to confidently estimate
their performance (Henderson et al., 2018).4 For this reason, ALE experiments are
not widely reproducible.

• ALE experiments are complex and not well standardised. ALE has many settings
and is available through multiple wrappers, each with different defaults, and the
output of ALE is heavily pre-processed on the user-side before being passed to the
algorithm.5 Furthermore, the way in which hyperparameters are chosen (for example,
which games are used in a grid search) and how scores reported vary between
papers. These factors introduce room for error and make the comparison of ALE
scores across the literature difficult.

• Strong scores on ALE mean only that the specific implementation, hyperparameter
and model combination performs well on ALE; it is hard to disentangle the effects
of the proposed contribution from the other aspects. Even where the effect is indeed
due to the proposed contribution, it is difficult to establish whether the benefit
occurs through the mechanism proposed by the authors. These issues are amplified
by the cost of ALE experiments, which generally keep the use of any controls—for
example, running same implementation of an exploration algorithm but with an

4We have had a reviewer ask for 10 seeds in place of 3. While we agree with the reviewer that using
3 seeds is insufficient, a back-of-the-envelope calculation puts the cost of running 10 seeds using Amazon
Web Services EC2 at over £50,000.

5Even applying the pre-processing steps in the wrong order can lead to very different results—
for example, on Space Invaders, ‘lasers’ are only visible every four frames (Mnih et al., 2015), and
interchanging two of the standard preprocessing steps can result in the loss of this important signal.
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epsilon-greedy policy—to a minimum.

In the context of exploration, we can alleviate some of these issues by using the classifica-
tion of ALE games by Ostrovski et al. (2017), which splits these into categories including
‘hard exploration with dense rewards’ and ‘hard exploration with sparse rewards’, and
focusing our efforts on these hard exploration tasks. However, such insights into the ALE
benchmark are not readily available for other aspects of deep reinforcement learning.

7.5 Discussion

In this chapter, we reviewed a number of methods that use a feature-linear structure and
conjugate Gaussian regression to drive exploration. We did not, however, provide a broad
overview of the many approaches to exploration in deep learning. Our key omissions are:

• Other intrinsic bonuses/uncertainty quantification methods. Methods considered
in the literature include density models applied to the raw image observation
(M. Bellemare et al., 2016; Ostrovski et al., 2017), hashing methods applied to
auto-encoder-based state representations (H. Tang et al., 2017), and bonuses based
on prediction errors (Houthooft et al., 2016; Stadie et al., 2015; Pathak et al., 2017),
including those based on the prediction of the output of a random, fixed Q-function
network (Burda et al., 2018).

• Ensembling methods. These are RVF methods that define the sampling distribu-
tion for posterior sampling as uniform on a discrete set of Q-function estimators,
each perturbed in some manner (Osband, Van Roy, D. J. Russo et al., 2019).
The deep reinforcement learning implementation of these, Bootstrapped DQN
(Osband, Blundell et al., 2016) and Prior Functions (Osband, Aslanides et al.,
2018), are amongst the strongest practical exploration methods in the literature,
with performances roughly matching those of GP-SARSA and RLSVI respectively.
Ensembling methods are closely related to linear Q-function models; this connection
is discussed in Osband, Van Roy, D. J. Russo et al. (2019).

• Information directed sampling (IDS, D. Russo et al., 2014). IDS is an exploration
framework based on estimating the amount of information to be gained about Q⋆

M

by selecting each action, and explicitly trading it off against an estimate of the
regret incurred by taking that choice. IDS is superior to optimism and posterior
sampling methods for problems that include complex structure,6 but we are not
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aware of any reason to prefer IDS to optimism in the setting of this thesis. IDS has
been previously evaluated on ALE using ensembling-based uncertainty estimates
(Nikolov et al., 2018).

In the next chapter, we build on the methods described so far to construct a simple yet
effective exploration method based on a feature-linear Q-function model.

6Consider a pure exploration problem with a set of k ∈ N choices, where all one choice has reward 1
and the rest reward 0. The set of arms is then the powerset of choices and the reward for each arm is
the average of the rewards of the selected choices. An optimal strategy would perform binary search for
an order log k time to optimal reward; IDS can recover this approach, at least in theory. In contrast,
any arm containing more than a single choice has a priori zero probability of being optimal and will
therefore never be selected under posterior sampling. Posterior sampling therefore takes on average k/2
time-steps to find the optimal arm. See D. Russo et al. (2014) for more such examples.
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Chapter 8

Successor Uncertainties

This chapter introduces the main contribution of part II: Successor Uncertainties (SU),
a neural-linear value function model that, when combined with posterior sampling,
offers strong performance on both hard tabular problems and on the Atari Learning
Environment. The SU model takes the form

Qπ
l (s, a) = ⟨wl, φ

π
l (s, a)⟩ with wl ∼ N (µl

w,Σl
w) (∀l < L, ∀π ∈ Π)

for weights wl ∈ Rd and embeddings φπ
l (s, a) ∈ Rd (which will be estimated by a neural

network). Recall this means that at the start of the lth episode, the agent will sample a
set of weights wl from the posterior N (µl

w,Σl
w), computed using observations from all

previous episodes, and follow a policy greedy with respect to the induced Q-function
Qπ

l , where the policy π (used to compute the embeddings φπ
l ) remains to be specified.

The form of the SU model is motivated by our analysis of BDQN insection 7.3.2.

8.1 The successor feature structure

The key insight separating SU from previous works is the introduction of a successor
representation/feature constraint for the embeddings φπ

l (Dayan, 1993; Barreto et al.,
2017). We begin by showing the necessity of this constraint:

51 Theorem. Under the SU model structure, and assuming that for each l ∈ [L],
(I) conditionally on the history HlH , the implied posterior over rewards is independent of
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the policy π, and (II) Σl
w is positive definite, we have that for some ψ : S ×A 7→ Rd,

φπ
l (x) = E

∑
h<H

γhψ(Xh) | X0 = x


for all x ∈ S ×A, where X1, . . . , XH−1 ∈ S ×A are random variables with law given by
the interaction of π and some transition model Pl.

The embeddings φπ
l are therefore the expected discounted sum of some local state-action

embeddings ψ. This is known as a successor representation (Dayan, 1993) or, in the
context of deep reinforcement learning, successor features (Barreto et al., 2017).

Proof. With the chosen model structure, for all l ∈ L and a policy π ∈ Π, the mean
reward for a state-action pair (s, a) ∈ S ×A given HlH is

rl(s, a) = Qπ
l (s, a)− γEs′⟨Qπ

l (s′, ·), π(s′)⟩

= ⟨wl, φ
π
l (s, a)− γEs′⟨φπ

l (s′, ·), π(s′)⟩⟩,

for s′ ∼ Pl(s, a) for some transition model Pl. Note therefore that rl(s, a) is a Gaussian
random variable, and by (I), rl(s, a) = ⟨wl, ψ(s, a)⟩ for ψ independent of π and satisfying

ψ(s, a) = φπ
l (s, a)− γEs′⟨φπ

l (s′, ·), π(s′)⟩ (∀(s, a) ∈ S ×A).

Now consider Qπ
l . From the model definition,

Qπ
l (x) = E

∑
h<H

γhrl(Xh) | wl

 = E

∑
h<H

γh⟨wl, ψ(Xh)⟩ | wl


for X0 = x almost surely and X1, . . . , Xh−1 ∈ S ×A random state-action pairs distributed
according to the measure induced by Pl and π. Then, by linearity and recalling that
Qπ

l (x) = ⟨wl, φ
π
l (x)⟩, we have

Qπ
l (x) = ⟨wl,E

∑
h<H

γhψ(Xh)⟩ = ⟨wl, φ
π
l (x)⟩

for wl in the support of N (µl
w,Σl

w). From (II), N (µl
w,Σl

w) has full support on Rd for all
l ∈ [L]. With that, the above weak equality implies the claim.

Assumption (I) differentiates our model from GP-ESARSA, presented in section 7.3.1,
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and will allow it to scale beyond tabular examples. It is also sensible: rewards are a
property of the MDP, inferred from the history, whereas the policy is chosen by the
agent, again based on the history. Hence, given the history, the two variables ought to be
independent. (II) allows us to uniquely determine φπ

l for a given choice of ψ; this makes
the exposition simpler, but is not otherwise necessary. It is also trivial to satisfy.

8.2 The Successor Uncertainties model and algorithms

We now use insight from theorem 51 to develop our Successor Uncertainties Q-function
model, and develop two tabular randomised value function algorithms based on it, SU-
MAX and SU-ESARSA. For this section, we assume that ψ : S ×A 7→ Rd is a one-hot
encoding of the state-action space, ψ(s, a) = e(s,a).

8.2.1 SU Q-function model

For each l ∈ [L], the Successor Uncertainties model is given by the following two choices:

1. For a given policy π, we use embeddings φπ
l that satisfy

φπ
l (s, a) =

ψ(s, a) s ∈ SH−1

ψ(s, a) + γEs′∼P̄l(s,a)⟨π(s′), φπ
l (s′, ·)⟩ otherwise,

for P̄l an empirical transition model.

2. We take the posterior for wl to be given by combining a prior N (0, αI), α > 0,
with a likelihood induced by the model Rτ = ⟨w,ψ(Sτ , Aτ )⟩+ ετ with ετ ∼ N (0, β)
for β > 0, independent for each τ < T . That is, P l

w = N (µw,Σw) with

µw = ΣwΨR and Σw =
(
α−1I + β−1ΨΨT

)−1
,

where Ψ = [ψ(Sτ , Aτ ) : τ < lH] ∈ Rd×lH and R = [Rτ : τ < lH]T ∈ RlH .

The posterior over the Q-function is then P l
Q = N (µl

Q,Σl
Q) with

[µl
Q](s,a) = ⟨µw, φ

π
l (s, a)⟩ and [Σl

Q](s,a),(s′,a′) = ⟨φπ
l (s, a)φπ

l (s′, a′)T ,Σw⟩F .

Note that the Q-function covariance under the SU model is, in general, a dense matrix.
Also, all quantities involved can be evaluated without instantiating any object of size
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that scales with either |S| or |A|, and so the model can scale beyond tabular problems.

Examining the expressions for µl
Q and Σl

Q for a given state-action pair, the mean Q-value
is high if the successor features thereafter align with the mean reward vector and the
variance is low if the outer product of those successor features aligns closely with the
outer products of previously observed features. This is intuitively sensible.

8.2.2 SU algorithms

We now present two randomised value function algorithms based on the SU model,
SU-MAX, which models Q⋆

M , and SU-ESARSA, which models Qπ̄l
M for a sequence of

policies {π̄l} induced by the interaction policy. We plot the performance of both methods
on the Deep Sea benchmark in fig. 8.1. Both methods use α = 100 and β = 0.01, the
same parameter setting as were used in all previous experiments.

SU-MAX This is a classic RVF-type algorithm: at the start of episode l ∈ [L],
we sample wl ∼ P l

w and construct a reward function rl(s, a) = ⟨wl, ψ(s, a)⟩ for all
(s, a) ∈ S ×A. We then solve for Q⋆

Ml
for the MDP Ml given by rl and an empirical

average transition model—for example, by using value iteration—and use a policy
πl ∈ GQ⋆

Ml
.

The performance of SU-MAX, shown in fig. 8.1 (top), closely matches that of RLSVI.
Indeed, we now show that P l

Q induced by SU-MAX is similar to that of RLSVI and use
this to argue that SU-MAX has sublinear regret. Assume w0 ∼ N (m,αI) for m ∈ R
and α > 0—that is, introduce a prior mean parameter m. Then for Ql ∼ P l

Q partitioned
into restrictions {Ql|h}, where Ql|h : Sh ×A 7→ R is the restriction of Ql to Sh ×A, and
taking Ql|H = 0, the conditional distribution for Ql|h given Ql|h+1 is N (µ̃h, diag(ν̃h))
where, writing χt(s, a) = 1{St = s, At = a},

µ̃h(s, a) = ν̃h(s, a)
(
α−1m+ β−1∑

i<l

χiH+h(s, a)RiH+h

)
+ 1
nlH(s, a)

∑
i<l

χiH+h(s, a) max
b∈A

Q|h+1(SiH+h+1, b)

and ν̃h(s, a) = (α−1 + β−1nlH(s, a)). Denoting by N (µh, diag(νh)) the corresponding
RLSVI conditional distributions (as given in eq. (6.2) on page 124), and setting α, β,m
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Figure 8.1: Deep Sea performance with a single seed for each method. Points denote
number of episodes to solution for each problem size; crosses denote runs that failed to
solve problem within 2000 episodes. Dotted lines depict analytic time to first reward for
a uniform policy and an empirical fit to the performance of RLSVI respectively.

to the same values for both models, we have that

(µh − µ̃h)(s, a) ≤ αHνh(s, a) and νh(s, a) = ν̃h(s, a) (∀(s, a) ∈ S ×A),

where we used Ql|h+1 ≤ H for all h ≤ H to bound the difference of means. Therefore,
since stochastic optimism is transitive and SU-MAX is stochastically optimistic for
the RLSVI model, given appropriate α, β,m it is also stochastically optimistic for Q⋆

M .
Noting also that the SU-MAX model concentrates at the same rate as RLSVI, we can
infer that it has sublinear regret with a bound similar to that of RLSVI.

However, like RLSVI, SU-MAX requires the solving of a new planning task in each
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episode and thus may be difficult to scale to the deep reinforcement learning setting. For
this reason, we consider the following SU-ESARSA algorithm.

SU-ESARSA Here, we model the Q-function induced by the average of the posterior
sampling exploration policies induced by our model P l

Q. That is, we model the Q-function
for the policy π̄l = EQ∼P l

Q
GQ or, more explicitly,1

π̄l(s)(a) = P l
w(⟨w,φπ̄l

l (s, a)− φπ̄l
l (s, b)⟩ > 0 for all b ̸= a) (∀(s, a) ∈ S ×A).

We can solve for φπ̄l
l using value iteration. We then take πl ∈ GQl for Ql ∼ P l

Q as usual.

The performance of SU-ESARSA on the Deep Sea benchmark (fig. 8.1, bottom) is similar
to that of GP-SARSA (fig. 7.3, top). Indeed, the two models themselves are similar.
The Q-function covariance matrix for a given policy π under SU-ESARSA is given by

ΣQ = (I − γP̄ π)−1
[
α−1I + β−1ΨΨT

]−1
(I − γP̄ π)−T

Comparing this with the covariance matrix under GP-ESARSA, given in eq. (7.1) on
page 139, the key difference is the location of the regularisation term α−1I. The position
it takes within the SU-ESARSA covariance matrix allows us to use φπ

l = (I − γP̄ π)−1

in order to avoid having to explicitly construct the matrix (I − γP̄ π); this leads to
SU-ESARSA being easier to scale to the deep reinforcement learning setting.

When compared with SU-MAX, SU-ESARSA combines more naturally with GPI-based
deep reinforcement learning. While SU-ESARSA still requires solving policy evaluation
for each episode l ∈ [L], since the difference between P l

w and P l+1
w is (in some sense)

small, π̄l and π̄l+1 are close. We can therefore warm-start the policy evaluation at episode
l + 1 using the solution from episode l, allowing for efficient (in practice) generalised
policy iteration. In contrast, the dependence within SU-MAX on P l

w and P l+1
w is through

the samples wl and wl+1, which may be far apart.

8.3 Deep Successor Uncertainties

We now combine our SU-ESARSA model with neural network function approximation
and benchmark our implementation on the Atari Learning Environment. The key change
from the tabular setting is that we no longer assume ψ to be given and instead learn a

1This can be estimated using simple Monte Carlo, see eq. (8.2) on page 158.
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suitable embedding online. We now look at how to do so, and how to adapt the Deep
Q-Networks network architecture and loss to our needs. The full algorithm is listed in
fig. 8.2 on page 157.

8.3.1 Learning reward-predictive embeddings

The key relationship satisfied by the embedding ψ is that

r(s, a) = ⟨µw, ψ(s, a)⟩ (∀(s, a) ∈ S ×A)

for some µw ∈ Rd. This motivates learning a network ψ̂ to use as the reward-predictive
embedding by minimising a loss of the form

Lr(s, a, r) =
(
r − ⟨µ̂w, ψ̂(s, a)⟩

)2

with respect to both µ̂w and the parameters of ψ̂ in expectation over observations (s, a, r).

Additionally, we suggest imposing the following two constraints on ψ̂:

1. ψ̂(s, a) ≥ 0 for all (s, a) ∈ S ×A. This ensures that

E
[ ∞∑

τ=0
γτ ψ̂(Sτ , Aτ ) | S0 = s, A0 = a

]
> 0 (∀(s, a) ∈ S ×A),

for any policy and transition model and so stops cancellation of embeddings in the
sum, which could otherwise lead to zero posterior variance for the Q-function—a
pathological situation.

2. ∥ψ̂(s, a)∥2 = 1 for all (s, a) ∈ S ×A. This leads to all state-action pair having the
same a priori mean reward variance and makes choosing α and β easier.

With this in mind, we learn ψ̂ as the output of a ReLU network, followed by explicit
normalisation. The network takes as input s ∈ S and outputs f(s) ∈ Rd′ at the
penultimate layer. We then take

ψ̂′(s, a) = ReLU(UT
a f(s) + ba) and ψ̂(s, a) = ψ̂′(s, a)

∥ψ̂′(s, a)∥2 + ε
, (8.1)

where Ua ∈ Rd′×d is a weight matrix, b1, . . . , b|A| ∈ Rd are bias terms for each action and
we take ε to be a small positive constant to avoid division by zero.
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Learning the embedding function ψ̂ online causes difficulty for the computation of Σl
w,

which depends on ψ̂ directly, and µl
w, which in turn depends on Σl

w. Specifically, each
time the function ψ̂ changes, we need to recompute Σl

w and µl
w. This requires a pass

through all previous observations, and thus also storing these. Instead:

• We use µ̂w, the final weights of the neural network predicting the mean reward
function, in place of the analytic mean µl

w.

• At each step t, we compute ψ̂t = ψ̂(St, At), and use the approximate covariance

Σ̂w =
[
α−1ζtI + β−1∑

τ<t

ζt−τ ψ̂τ ψ̂
T
τ

]−1

where ζ ∈ [0, 1) is a forgetting parameter that reduces the influence of outdated
embeddings.

The mean approximation was previously used in Levine et al. (2017) and windowing
schemes for covariance functions date back to at least Dearden et al. (1998).2

8.3.2 Neural network approximation of successor features

We use a neural network φ̂ to estimate the successor features φl for the ESARSA policy.
From our constraints on ψ̂, it is clear that φ̂ needs to be non-negative. Again, we take
this to be the output of a ReLU network with some penultimate layer f(s) ∈ Rd′ , d′ ∈ N,
and

φ̂(s, a) = ReLU((Va + V̄ )f(s) + ca + c̄),

where V1, . . . , V|A|, V̄ ∈ Rd×d′ are weight matrices and c1, . . . , c|A|, c̄ ∈ Rd offsets. We
include V̄ and c̄ to act in the manner of duelling networks (Wang et al., 2016), potentially
making learning easier where multiple actions lead to similar state-action distributions.

Next, we need a loss function for the network φ̂. In line with the DQN work, we suggest
a standard squared Bellman error loss applied elementwise on the entries of φ̂. That is,

2A promising alternative to our heuristic approach would be to explicitly correct for the error
introduced by the use of outdated embeddings in computing the covariance Σw. Consider an embedding
function ψ which induces a model N (µw,Σw) and a modified function φ′ with model N (µ′

w,Σ′
w).

Assuming the reward is linearly realisable in both embeddings, then the likelihood of observing the
rewards is the same under both models. This likelihood-matching condition yields a semidefinite program
that computes Σ′

w from Σw. The program can be solved iteratively using standard proximal point
methods. This likelihood matching method has been investigated in the bandit setting by Zahavy et al.
(2019) and Nabati et al. (2021).
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Algorithm: Deep SU-ESARSA with posterior sampling
Parameters: prior variance α > 0; likelihood variance β > 0; covariance decay
factor ζ ∈ [0, 1); discount factor γ ∈ [0, 1).
Initialisation: Λ← α−1I, Σ̂w ← Λ−1

For each episode:
1. Sample a weight w ∼ N (µ̂w, Σ̂w).
2. Obtain initial state S.
3. For each step in episode:

(a) Take action A ∈ arg maxb∈A⟨φ̂(s, b), w⟩.
(b) Observe reward R and next state S ′, and D ∈ {0, 1} indicating end

of episode. Add (S,A,R, S ′, D) to the replay buffer.
(c) Sample batch of observations B uniformly from the replay buffer and

a weight u ∼ N (µ̂w, Σ̂w). For each (s, a, r, s′, d) ∈ B compute next action
a′ ∈ arg maxb∈A⟨φ(s, b), u⟩ and targets

YQ = r + γ(1− d)⟨µ̂w, φ̂(s′, a′)⟩ and Yφ = ψ̂(s, a) + γ(1− d)φ̂(s′, a′),

and then the corresponding losses

LQ = (⟨µ̂w, φ̂(s, a)⟩ − YQ)2, Lφ = (φ̂(s, a)− Yφ)2,

and the reward loss

Lr = (⟨µ̂w, ψ̂(s, a)⟩ − r)2.

Take gradient step minimising LQ +Lφ +Lr with respect to ψ̂, φ̂ and µ̂w.
(d) Update the precision matrix

Λ← ζΛ + β−1ψ̂(S,A)ψ̂(S,A)T .

4. Update Σ̂w ← Λ−1.

Figure 8.2: Deep SU model with approximate ESARSA updates using a single sample
Monte Carlo estimate for the target policy and with exploration via posterior sampling.
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for a tuple (s, a, r, s′) sampled from the replay buffer and a policy π, we compute targets

Yφ(s, a) = ψ̂(s, a) + γ⟨π(s′), φ̂(s′, ·)⟩,

and use a loss of the form Lφ = ∑d
i=1[φ̂(s, a) − Yφ(s, a)]2i . We take the policy π to be

given by a Monte Carlo estimate of that used in SU-ESARSA,

π(s)(a) = 1
k

k∑
m=1

1{⟨wm, φ̂(s, a)− φ̂(s, b)⟩ > 0 for all b ̸= a} (∀(s, a) ∈ S ×A) (8.2)

for k ∈ N a hyperparameter and w1, . . . , wk independent samples from N (µ̂w, Σ̂w).

In practice, we found that in order to obtain strong performance on even very simple
problems, we need to include an explicit mean Q-function loss in addition to the successor
feature and reward losses. This takes the form

LQ(s, a, r) = (⟨µ̂w, φ̂(s, a)⟩ − YQ(s, a, r))2 with YQ(s, a, r) = r + γ⟨µ̂w, φ̂(s′, a′)⟩.

We take gradients with respect to both φ̂ and the weights µ̂w. It is perhaps unsurprising
that for a DQN-based method to work well, it needs to include a DQN-like loss.

8.3.3 Results on the Atari Learning Environment

We benchmarked the deep implementation of the SU algorithm, presented in fig. 8.2,
on the standard set of 49 games from the Arcade Learning Environment. We use 200M
training frames under the ‘no-ops start 30 minute emulator time’ test protocol described
in Hessel et al. (2018) and averaged the results over three seeds. We use a standard
network architecture, as in Mnih et al. (2015) and Van Hasselt et al. (2016), with the
head replaced by ReLU networks predicting the successor features and reward-predictive
embeddings. See appendix 8.A for more in-depth implementation details.3

Deep SU obtains a median human normalised score of 2.09. As shown in table 8.1, this
is a significant improvement over competing methods. We do not compare against the
results in Azizzadenesheli et al. (2018); there the authors only report scores for a small
subset of the games and use a non-standard testing procedure. Osband, Aslanides et al.
(2018), where Bootstrap+Prior is introduces, does not report Atari results; we thus
compare with results for the original Bootstrapped DQN method instead (scores reported

3Code for the Atari experiments: djanz.org/successor_uncertainties/atari_code
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Table 8.1: Human normalised Atari scores. Superhuman performance denotes the per-
centage of games on which human performance is surpassed (as in Mnih et al., 2015).

Algorithm Human normalised score percentiles Superhuman
25% 50% 75% performance

Successor Uncertainties 1.06 2.09 5.95 77.55%
Bootstrapped DQN 0.76 1.60 5.16 67.35%
UBE 0.38 1.07 4.14 51.02%
DQN + ε-greedy 0.50 1.00 3.41 48.98%
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Figure 8.3: Difference in the human normalised score between SU and each of Boot-
strapped DQN, UBE and DQN for each ALE game, clipped to the range [−2.5, 2.5].
Positive values indicate SU outperformed the baseline algorithm. SU outperforms the
baselines on 36/49, 43/49 and 42/49 of the games respectively. Hatching is used to
highlight negative values.
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Table 8.2: Raw ALE scores for SU alongside DQN, UBE and Bootstrapped DQN.
Baseline scores taken from Hessel et al. (2018).

Game DQN UBE Bootstrapped DQN SU
Alien∗ 1,620.0 3,345.3 2,436.6 6,924.4
Amidar∗ 978.0 1,400.1 1,272.5 1,574.4
Assault 4,280.4 11,521.5 8,047.1 3,813.8
Asterix 4,359.0 7,038.5 19,713.2 42,762.2
Asteroids 1,364.5 1,159.4 1,032.0 2,270.4
Atlantis 279,987.0 4,648,770.8 994,500.0 2,026,261.1
Bank Heist∗ 455.0 718.0 1,208.0 1,017.4
Battle Zone 29,900.0 19,948.9 38,666.7 39,944.4
Beam Rider 8,627.5 6,142.4 23,429.8 11,652.3
Bowling 50.4 18.3 60.2 38.3
Boxing 88.0 34.2 93.2 99.7
Breakout 385.5 617.3 855.0 352.7
Centipede 4,657.7 4,324.1 4,553.5 7,049.3
Chopper Command 6,126.0 7,130.8 4,100.0 15,787.8
Crazy Climber 110,763.0 132,997.5 137,925.9 171,991.1
Demon Attack 12,149.4 25,021.1 82,610.0 183,243.2
Double Dunk -6.6 4.7 3.0 -0.2
Enduro 729.0 30.8 1,591.0 2,216.3
Fishing Derby -4.9 3.1 26.0 53.3
Freeway∗∗ 30.8 0.0 33.9 33.8
Frostbite∗ 797.4 546.0 2,181.4 2,733.3
Gopher 8,777.4 13,808.0 17,438.4 19,126.2
Gravitar∗∗ 473.0 224.5 286.1 684.4
H.E.R.O.∗ 20,437.8 12,808.8 21,021.3 22,050.8
Ice Hockey -1.9 -6.6 -1.3 -2.9
James Bond 768.5 778.4 1,663.5 2,171.1
Kangaroo 7,259.0 6,101.2 14,862.5 15,751.1
Krull 8,422.3 9,835.9 8,627.9 10,103.9
Kung-Fu Master 26,059.0 29,097.1 36,733.3 50,878.9
Montezumas Revenge∗∗ 0.0 499.1 100.0 0.0
Ms. Pac-Man∗ 3,085.6 3,141.3 2,983.3 4,894.8
Name This Game 8,207.8 4,604.4 11,501.1 12,686.7
Pong 19.5 14.2 20.9 21.0
Private Eye∗∗ 146.7 -281.1 1,812.5 133.3
Q*Bert∗ 13,117.3 16,772.5 15,092.7 22,895.8
River Raid 7,377.6 8,732.3 12,845.0 17,940.6
Road Runner 39,544.0 56,581.1 51,500.0 61,594.4
Robotank 63.9 42.4 66.6 58.5
Seaquest 5,860.6 1,880.6 9,083.1 68,739.9
Space Invaders 1,692.3 2,032.4 2,893.0 13,754.3
Star Gunner 54,282.0 44,458.6 55,725.0 78,837.8
Tennis 12.2 10.2 0.0 -1.0
Time Pilot 4,870.0 5,650.6 9,079.4 9,574.4
Tutankham 68.1 218.6 214.8 247.7
Up and Down 9,989.9 12,445.9 26,231.0 29,993.4
Venture∗∗ 163.0 -14.7 212.5 1,422.2
Video Pinball 196,760.4 51,178.2 811,610.0 515,601.9
Wizard Of Wor∗ 2,704.0 8,425.5 6,804.7 15,023.3
Zaxxon∗ 5,363.0 5,717.9 11,491.7 14,757.8
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in Osband, Blundell et al., 2016). We display the relative performance of SU against
that of Bootstrapped DQN, UBE and DQN visually in fig. 8.3. SU outperforms these on
36/49, 43/49 and 42/49 of the games respectively. We report the raw scores attained by
Deep SU on individual games in table 8.2. We highlight ‘hard exploration games with
dense rewards’ by ∗ and ‘hard exploration games with sparse rewards’ by ∗∗ (as classified
by Ostrovski et al., 2017). SU outperforms DQN, UBE and Bootstrapped DQN on 8/9
of the former and 2/5 of the latter.

8.4 Discussion

We are now at the end of part II. Our main contribution here has been in the identification
of a successor feature structure necessary for scalable feature-linear Gaussian Q-function
models. Based on this, we developed two tabular algorithms: SU-MAX, which matches
the performance of RLSVI on the Deep Sea MDPs, and which we showed is stochastically
optimistic for the RLSVI Q-function estimator; and SU-ESARSA, which matches the
performance of GP-SARSA but is better suited for problems with a large state-action
space cardinality. We extended SU-ESARSA to the deep reinforcement learning setting
and showed that it attains strong scores in the Atari Learning Environment. We now
turn to discussing the shortcomings of our work and potential directions for future work.

From a theoretical perspective, our finite MDP setting is very limited. An immediate
extension of our work would be to integrate it with the linear MDP assumption of Jin et al.
(2020). The methodology therein, based on the OFUL concentration inequality, might
allow for a regret bound for SU-MAX with linear function approximation. Thereafter, the
natural research direction would be in looking at regret under neural network function
approximation. Dong et al. (2021) have some interesting results for this non-linear
setting, but these suggest that optimism (and, equivalently, posterior sampling) may be
insufficient.

From a practical perspective, our results across the Atari Learning Environment are
strong, particularly so on ‘hard exploration with dense rewards’ games. However, SU
scored poorly on the hardest of the exploration challenges: it scored zero on Montezuma’s
Revenge on all three seeds. We have two hypotheses for why:

1. We extended the weaker SU-ESARSA model due to its better integration with
generalised policy iteration. It is possible that a suitably extended SU-MAX
algorithm would attain stronger scores on hard exploration tasks.
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2. The problem might not be with exploration but with learning. Montezuma’s revenge
and other sparse reward tasks require learning and credit assignment over long
sequences of time-steps. As shown in O’Donoghue et al., 2018, multi-step temporal
difference learning methods (Sutton, 1988) can significantly improve performance
on such sparse tasks. Combining Deep SU-ESARSA with multi-step learning and
other tricks for dealing with long horizons (as in, for example, Pohlen et al., 2018)
might improve scores on sparse reward tasks.

Both of these hypothesis provide directions for future research.

Testing hypothesis 1 requires some thought. We suspect a combination of SU-MAX with
multi-task learning methods may yield a strong extension deep reinforcement learning
algorithm. For example:

• Barreto et al. (2017) consider a multi-task reinforcement learning setting, tackling
a set of MDPs with shared transition dynamics but different reward functions, and
use successor features and an interesting approximation result to quickly estimate
near-optimal value functions for new MDPs, given those previously solved. They
apply their methodology to the deep reinforcement learning setting. Interpreting
SU-MAX as solving such a sequence of tasks, we may be able to use their method
to reduce the computational complexity of SU-MAX and thus combine it with
deep reinforcement learning. Their approximation result might even yield a regret
bound (under some suitable regression oracle assumptions).

• That same multi-task reinforcement learning problem could be tackled with more
general meta-learning methods, for example those of Finn et al. (2017). This
approach may give an alternative extension of SU-MAX to deep reinforcement
learning, but is unlikely to provide for new theoretical insights.

Implementing either approach, we would be very interested in combining it with a
more modern framework for deep reinforcement learning, such as that given by the
AlphaStar/AlphaZero/MuZero line of work (Silver, Huang et al., 2016; Team, 2019;
Schrittwieser et al., 2020).

Examining hypothesis 2 is conceptually easier, but requires a great deal of engineering
effort and, importantly, computational budget. It may be made easier by implementing
SU within the framework of parallel data collection using multiple agents (Nair et al.,
2015) and using seed sampling to coordinate their exploration (Dimakopoulou et al., 2018).
Such approaches can reduce the time required to run the Atari Learning Environment
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benchmark by an order of magnitude or more. Also, since our focus is on exploration,
and we could restrict our attention to the subset of games classified as posing a hard
exploration challenge with sparse rewards. Note that hypothesis 2 addresses not just our
algorithm, but exploration more broadly.

Looking beyond our contributions, deep reinforcement learning literature is still missing
exploration methods that robustly tackle hard exploration problems. While heuristic
methods have performed well on particular environments, as in the case of the Go-Explore
method on Montezuma’s Revenge (Ecoffet et al., 2019), it is unclear whether these are
broadly applicable. But perhaps the bandit-based view taken in this thesis is too rigid,
and the future of practical reinforcement is in a development of effective heuristics and
the combination of these with domain specific knowledge to solve new problems.
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Appendix 8.A ALE experimental details

Training procedure We train for 200M frames (50M action selections with each
action repeated for 4 frames), using the Adam optimiser (Kingma et al., 2014) with a
learning rate of 5× 10−5 and a batch size of 32. A target network is utilised, as in Mnih
et al. (2015), and is updated every 10,000 steps, as in Van Hasselt et al. (2016).

Network architecture We use a single neural network for both ψ̂ and φ̂.

1. Features: the neural network converts 4× 84× 84 pixel states (obtained through
standard frame max-pooling and stacking) into a 3136-dimensional feature vector,
using a convolution network with the same architecture as in Mnih et al., 2015.

2. Hidden layer: the feature vector is then mapped to a hidden representation of size
1024 by a fully connected layer followed by a ReLU activation.

3. ψ estimation: the hidden representation is mapped by a fully connected layer with
ReLU activation to a 64 vector for each action a in A, which is then normalised as
in eq. (8.1) on page 155 with ε = 10−6. This gives ψ̂(s, a).

4. φ estimation: the hidden representation is mapped to 1 + |A| vectors of size 64.
The first vector gives the average successor features for that state, denoted φ̄(s),
whilst each of the |A| vectors predicts an advantage φ̂′(s, a). The overall successor
feature prediction is given by φ̂(s, a) = φ̄(s) + φ̂′(s, a).

5. Q-function and reward prediction: a final linear layer with weights µ̂w is shared for
both φ̂ and ψ̂, mapping φ̂ to Q value predictions and ψ̂ to reward predictions.

Hyperparameter selection We used six games for hyperparameter selection: As-
terix, Enduro, Freeway, Hero, Qbert, Seaquest, a subset of the games commonly
used for this purpose (Munos et al., 2016). 12 combinations of parameters in the ‘search
set’ column of table 8.3 were tested (that is, not an exhaustive gridsearch), for a total of
12× 6 = 72 full game runs, or approximately a third of the entire computational cost.
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Table 8.3: Hyperparameters used for Deep SU in ALE experiments.

Hyperparameter Search set Value used
Action repeat — 4
Train interval — 4

Learning rate {2.5× 10−4, 5× 10−5} 5× 10−5

Batch size — 32
Gradient clip norm cut-off — 10
Target update interval {103, 104} 104

Successor feature size {32, 64} 64
Hidden layer size — 1024

Prior variance α — 1
Likelihood variance β {10−3, 10−2} 10−3

Σ̂w decay factor ζ {1− 10−5, 1− 10−4} 1− 10−5
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Conclusion and future work

In this thesis, we considered the problem of sequential decision making within the bandit
and the reinforcement learning settings, with a view of combining theory with practical
insights to produce effective, fast and robust algorithms. Our main contributions in the
area of bandit/global optimisation and kernel-based algorithms were:

• Results on Matérn kernel spectrum. We developed a novel bound that relates the
information gain associated with a Matérn kernel regression problem as a function
of the volume of the domain and showed an immediate application of this bound
to the GP-UCB algorithm. These results may find wider application.

• Partitioned GP-UCB algorithm. We built on the information gain bound to
design a hierarchical Gaussian process optimisation algorithm for bandit and global
optimisation with strong guarantees on performance and computational complexity
for a large class of problems. We tested the algorithm on a set of synthetic
benchmarks.

And in the area of applied reinforcement learning:

• Flaws in uncertainty modelling. We identified a group of related flaws in the
way some common probabilistic model-free reinforcement learning methods model
uncertainty about the state-action value function, particularly in the context of
neural function approximation. We provided some basic tools for the analysis
of these methods and showed how careful empirical methodology can be used to
identify such problems.

• Successor Uncertainties. We introduced the Successor Uncertainties Q-function
model and demonstrated how combined with posterior sampling it yields a reinforce-
ment learning algorithm capable of solving hard tabular problems as well as tackling
the Atari Learning Environment under neural network function approximation.
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In both areas, our contributions significantly advance understanding and methodology.

Each of the two parts of this thesis ends with an outline of short-to-medium-term future
work directions. In the longer term, we see the following as the most important research
directions related to the topic of this thesis:

• Theory for neural network function approximation. Much of the recent impetus in
the research and application of machine learning, including reinforcement learning,
has come from the advent of deep learning. However, deep learning is largely an
empirical field; our understanding of the sample complexity and generalisation
properties of neural networks is poor, especially so as it pertains to the very complex
neural network models often used in practice. A better theoretical understanding
of deep learning would likely advance the entirely of the machine learning field. In
the context of this thesis, such development would aid in the design of mechanisms
for provably effective sequential decision making in domains where neural network
function approximation is virtually necessary: computer games, biological problems,
autonomous driving, robotics and others.

• Fast practical sequential optimisation with guarantees. The area of bandit algorithms
and the theory of sequential optimisation has gathered huge interest in the recent
years. Applied global optimisation/Bayesian optimisation has been a very popular
research topic since at least Osborne et al. (2009). What is missing is work at
the intersection. While we attempt to address this area in part I of this thesis,
our work is superficial. For example, we fail to address the important topic of
hyperparameter optimisation within our method, either in theory or practice.

• Robust exploration within deep reinforcement learning systems. Despite the advances
in deep reinforcement learning, and indeed notwithstanding the contributions of this
thesis, exploration within deep reinforcement learning remains an unsolved problem.
While development of theory for neural network function approximation and its
combination with sequential optimisation may provide for many developments in
this area, there is also a large scope for empirical work: for example, a core question
in our opinion is in identifying the difficulty posed by benchmarks like Montezuma’s
Revenge and Pitfall. Is the problem really in exploration, or is it more related to
the long-term credit allocation required therein? The answer to this determines
the important directions within this subfield.
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